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Fig. 1. Given single-view portrait photos, our method automatically generates photo-realistic facial animations that closely match the expressions in the

driving frames (shown in smaller figures). A realtime demo is shown on the right. From let to right, top to botom, original photos courtesy of Pedro Haas,

Gety Images, Jevgeni Kurnikov, and Universal Studios Licensing LLC.

This paper introduces a novel method for realtime portrait animation in a

single photo. Our method requires only a single portrait photo and a set

of facial landmarks derived from a driving source (e.g., a photo or a video

sequence), and generates an animated image with rich facial details. The

core of our method is a warp-guided generative model that instantly fuses

various ine facial details (e.g., creases and wrinkles), which are necessary

to generate a high-idelity facial expression, onto a pre-warped image. Our

method factorizes out the nonlinear geometric transformations exhibited in

facial expressions by lightweight 2D warps and leaves the appearance detail

synthesis to conditional generative neural networks for high-idelity facial

animation generation. We show such a factorization of geometric transfor-

mation and appearance synthesis largely helps the network better learn

the high nonlinearity of the facial expression functions and also facilitates

the design of the network architecture. Through extensive experiments on

various portrait photos from the Internet, we show the signiicant eicacy

of our method compared with prior arts.
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1 INTRODUCTION

Self expression is a vital part of understanding life, and

enjoying it to the full. ± Oliver Bowden

Facial expression, one of primary nonverbal communication form,

plays a vital role in our daily social interactions. As a highly com-

plex process, facial expressions typically involve the movements of

various motions and positions of the muscles beneath the skin. For

example, a smile could cause a closing of the eye, an opening of the

mouth, and folds around the nasion.

Image is one of the most common visual forms that can carry

realistic facial expressions, within which, photo-realistic editing

results can be achieved [Averbuch-Elor et al. 2017; Cao et al. 2014a;

Thies et al. 2016]. A number of research works have been devoted

to facial expression editing, expression synthesis, and facial reenact-

ment [Averbuch-Elor et al. 2017; Garrido et al. 2014; Thies et al. 2016;

Vlasic et al. 2005]. Previous work on facial manipulation typically

requires an input of a driving video or a video of the target portrait

so that the contents in those videos could be either used for 3D

reconstruction [Breuer et al. 2008] or borrowed for ine-scale detail

synthesis (e.g., creases, wrinkles, and hidden teeth, etc.) [Averbuch-

Elor et al. 2017; Thies et al. 2016]. Expression editing in a single
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image is also possible [Blanz et al. 2003; Blanz and Vetter 1999; Cao

et al. 2014a], but often requires manual initialization or fall short

in generating photo-realistic efects [Piotraschke and Blanz 2016].

Recent research of [Garrido et al. 2014] and [Averbuch-Elor et al.

2017] showed that through lightweight 2Dwarps, highly compelling

results can be achieved via the extrapolation of structural iducial

points and subsequent ine-grained detail composition using, e.g.,

ERI [Liu et al. 2001].

In this paper, we are interested in animating the subject in a single

portrait photo captured in a frontal pose with neutral expression,

to bring it to life and mimic various expressions in a high realism

manner. We aim to imitate the movements of the face in portrait

photos with diferent backgrounds as in [Averbuch-Elor et al. 2017].

To this end, we decouple the process into multiple stages. Our key

insight is that while the global structural movements of the facial

expression can be well captured by the 2D facial landmarks and pre-

served via 2D warps, the distribution of ine-scale local details and

hidden regions could be naturally synthesized by generative models.

More importantly, the 2D warps could factorize out the nonlinear

geometric transformations exhibited in the facial expressions and

better help the network to focus on the appearance synthesis.

We perform global 2D warp on the target portrait photo by a set

of control points imposed on facial and non-facial regions of the

portrait. The displacements of these control points are transferred

from the motion parameters of the driving source (see details in

Section 4). We then extract the facial region and interpolate the 2D

facial landmarks to generate a per-pixel displacement map which

carries the ine movements of the face under the global 2D warp. In a

key stage, the displacement map is fed into a generative adversarial

neural network together with the warped face image, to generate

a inal detail-reined facial image. The network, wg-GAN which

we term, is end-to-end trained with tons of warped facial images

and 2D displacement maps derived from publicly available video

datasets. We alter the network structure and loss functions to suit

our purpose of ine-scale detail synthesis. Since the derived network

might not fully unfold hidden regions such as the inner mouth

region, we particularly train another generative adversarial neural

network [Iizuka et al. 2017] to inpaint such hidden regions.

We show that the factorization of geometric transformations

exhibited in facial expressions through 2D warps largely beneits

the design of the generative model to allow it to focus on the local

detail synthesis and in the meanwhile eases the network training.

Using a learning-based generative model also enables us to bypass

the need for imposing requirements on the driving source as well

as the need for ad-hoc heuristic algorithms to account for ine-scale

detail synthesis. Moreover, the utilization of computing power of

GPUs in neural nets also enables our pipeline to operate in real

time. We demonstrate the eicacy of our method through extensive

experiments on various internet portrait photos as well as two user

studies. Our results illustrate a signiicant improvement over the

current state-of-the-art approaches and our method is feasible for a

variety of applications such as single-photo portrait animation and

facial expression editing.

2 RELATED WORK

Literature in facial manipulation stems from the seminal work of

[Blanz and Vetter 1999], where a 3D morphable model is itted to

a single image and texture mapped to enable parametric changes

in pose and appearance of the face. While having a 3D morphable

model could beneit the subsequent manipulation and enable more

faithful 3D reconstruction [Breuer et al. 2008; Piotraschke and Blanz

2016], these techniques often fall short in achieving the realism

of the manipulated faces at the ine-scale details as these features

cannot be fully spanned by the principal components [Averbuch-

Elor et al. 2017], not even with multiple images [Vlasic et al. 2005].

Having a video of the target face and a driving video of the source

can largely alleviate this problem as the contents such as ine-scale

details can be either inherited from the target sequence or borrowed

from the source [Mohammed et al. 2009]. This leads to a series

of research works which utilize an input video or a performance

database of the target face. For example, Vlasic et al. [2005] use a

3D morphable model to drive the facial expression in a video by

editing the expression parameters while Dale et al. [2011] use it

for face reenactment and later on Garrido et al. [2014] present a

method for facial replacement in a video. Li et al. [2012] use a facial

performance database of the target face. The work of [Thies et al.

2016] introduces a real-time framework for face reenactment in

a video where they also assume the target video carries rich and

suicient data to synthesize the facial details.

There are also a number of works in facial manipulation which

have their particular focuses. For example, [Fried et al. 2016] intro-

duce a method to manipulate the camera viewpoint from a single

input facial image. The work of [Kuster et al. 2012] and [Ganin et al.

2016] show their interests in manipulating the gaze of a single image.

Other works, such as [Garrido et al. 2015], focus on transferring

lip motion to an existing target video and [Blanz et al. 2003; Kawai

et al. 2013, 2014] focus on the realism of the mouth region. Facial

manipulation techniques have also been introduced for purposes of

data augmentation [Masi et al. 2016], magnifying (or suppressing)

expressions [Yang et al. 2012], removing large-scale motion [Bai

et al. 2013], or face frontalization [Hassner et al. 2015], where local

edits are commonly performed without signiicant changes in facial

expressions such as those in our cases.

Our method requires face tracking for expression transfer. There

is a line of research works in 3D facial performance capture and

animation from monocular RGB cameras [Cao et al. 2015, 2014a,

2013, 2016; Shi et al. 2014; Wang et al. 2016], video-audio [Liu et al.

2015], and depth cameras [Bouaziz et al. 2013; Hsieh et al. 2015; Li

et al. 2013; Weise et al. 2011]. Through performance capture, one

can calculate the rigid head transformation and the non-rigid facial

expressions and subsequently use them to transfer the expressions to

the target. As their main focus is 3D animation, manual interactions

are often required when going back to 2D to generate photo-realistic

edits [Cao et al. 2014b].

Recently, deep neural networks have been extensively exploited

towards facial manipulation and expression synthesis [Ding et al.

2018; Korshunova et al. 2017; Olszewski et al. 2017; Qiao et al. 2018;

Song et al. 2017; Yeh et al. 2016]. Among them, [Yeh et al. 2016]

introduce a variational autoencoder to learn expression low maps
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[Yang et al. 2011] for facial manipulation; [Korshunova et al. 2017]

introduce a CNN-based framework for face swapping in analogy to

image style transfer [Li and Wand 2016]. Other works leverage the

generative models (see a pioneer work in [Susskind et al. 2008]) to

handle ine-scale details such as wrinkles and teeth [Olszewski et al.

2017], or use expression code to condition on the generative model

[Ding et al. 2018]. Recent works of [Qiao et al. 2018; Song et al.

2017] utilize geometric facial landmarks to guide the network to

control the facial details synthesis, we show that such geometric cues

could signiicantly boost the network performance when coupled

with global and local transformations. Most of the aforementioned

methods are applicable within particular cropped facial regions do

not handle other regions in the image. Trivial stitching algorithms

such as in [Korshunova et al. 2017] will not work if one turns his

head and leaves distorted regions between the background and the

head. A most recent work of [Averbuch-Elor et al. 2017] addresses

this issue by taking conidence-aware lightweight 2D warps in both

body and head region followed by procedures of ine-scale details

transfer and hidden region hallucination. Unitizing the 2D structural

iducial points helps their method to bypass the need for precise

tracking procedure such as the ones presented in [Thies et al. 2015]

and [Cao et al. 2015]. Ourmethod its in by taking advantages of such

global 2D transformation and leverages it for the details synthesis

and hidden region hallucination with generative adversarial models.

In a concurrent work of [Kim et al. 2018], they introduce a gener-

ative neural network to predict photo-realistic video frames from

synthetic renderings of a parametric face model. Their method

achieves compelling results and is able to generate a full 3D head

motion and eye gaze to the target portrait. However, their method

requires a target video as input and the adversarial network they

propose is target-oriented and needs to be retrained for a new target

subject. In contrast, our method requires only a single portrait photo

and our generative network is generic which can be applied to any

target once trained.

Our method exploits the recent technique of generative adversar-

ial networks (GANs), which was originally designed for generating

visually realistic images [Goodfellow et al. 2014]. We found its poten-

tial power in learning the semantic ine-grained facial details when

incorporated with geometric guidance and unsupervised learning.

Through extensive experiments with alternative network structures

such as those in [Ding et al. 2018; Qiao et al. 2018; Song et al. 2017],

we show the superiority of our ine-grained adversarial model for

our particular purpose of facial detail reinement.

3 OVERVIEW

Ourmethod takes as input a single target portrait photowith the face

in the neutral-frontal pose. Our aim is to animate the portrait and

make the subject express various emotions as in our daily life. There

are a few challenges we need to address. First, as facial expression

involves complex and nonlinear geometrical transformations, we

need a model to capture the global transformations of major facial

components such as eyes, mouth, and nose since our humans are

highly sensitive to the subtle variations in these regions. Second, to

achieve photo-realistic results, we need to seamlessly transfer all

ine-scale facial details such as wrinkles, creases, and self-shadows.

Third, realistic animation of a portrait normally involves movements

in the head and the body. Thus, our algorithm should be able to

handle the motion of the head and the upper body adequately well.

To tackle the above mentioned challenges, we formulate the prob-

lem intomultiple stages: a global stage where we allow the structural

facial transformations to be carried by a set of iducial points com-

monly studied in the literature for various applications (e.g., in [Cao

et al. 2015]), and a set of extended feature points to account for head

and bodymovements [Averbuch-Elor et al. 2017]; a local stage where

we add back all necessary ine-scaled facial details and remove ar-

tifacts brought in by the 2D warps with a generative adversarial

neural network, which is trained with cropped facial images and

their corresponding 2D displacement maps; and a hidden region

hallucination stage where an inpainting generative adversarial neu-

ral network is employed to synthesize the inner mouth region (we

assume the portrait photo to be taken in neutral expression with

the mouth closed [Averbuch-Elor et al. 2017]).

Our paradigm is built upon two key observations: First, the global

lightweight 2D warps, although not carrying the full range of facial

transformations, can capture well the structural changes of the face

expression since essentially the major notable changes involved in

facial expressions are in the regions of the mouth, eyes, nose and

the silhouettes; Second, those warps partially carry the global and

local nonlinearity of the per-pixel transformation functions, which

could help the generative networks focus on the details synthesis

and avoid the learning of these nonlinear geometric transforma-

tions.We consolidate our indings by thoroughly experimenting with

alternatives. Below we describe our technical components in details.

4 THE ℧ETHOD

Our pipeline is shown in Fig. 2. To enable the global structural

manipulation of the portrait, we detect the facial landmarks as well

as non-facial feature points in the head and body region as the

control points of the portrait similar to [Averbuch-Elor et al. 2017]

(Fig. 2(a)). When the control points are modiied (e.g., by tracking a

source face), our goal is to create novel natural facial expressions.

To transfer the movements of the source landmarks to that of the

target, a direct 2D mapping could lead to unnatural expressions if

the source and target faces difer dramatically (e.g., a fat face v.s. a

thin one). We use the algorithm of DDE [Cao et al. 2014a] to track

the face of the source person, which simultaneously detects the

2D facial landmarks and recovers the 3D blendshapes, as well as

the corresponding expression and the 3D pose [Cao et al. 2014a].

We also use DDE to recover these initial properties for the target

image. We then transfer the expression and 3D pose from the source

to the target [Thies et al. 2016]. Subsequently, the transformed

target 3D facial landmarks on the face mesh are projected onto the

target image to get the displaced 2D landmarks. Then we apply the

conidence-aware warping to the target image as in [Averbuch-Elor

et al. 2017].

Fig. 5 left shows the coarse face image after warping. As noted

by [Averbuch-Elor et al. 2017], coarse 2D warps do not fully carry

the richness of facial expressions. For example, the wrinkles and

creases merited in the facial transformation need to be transferred

properly. This is also true for hidden regions such as the inner
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Fig. 2. An overview of our method. Given a single portrait photo and a driving source (either a photo or a video), our method first globally warps the image

with tracked feature landmarks. Then the facial region extracted from the warped image, along with a computed displacement map, are fed into a refiner

generative adversarial network to generate photo-realistic facial details. The refined face is then fed into another generative adversarial network to hallucinate

the hidden regions (i.e., the inner mouth region). Both networks operate in 2D. Finally, the refined face is seamlessly integrated into the warped image to

generate the animated result. Original photo courtesy of Pedro Haas.

mouth (Fig. 5 middle). To address these issues, [Averbuch-Elor et al.

2017] proposed algorithms to transfer the wrinkles and creases by

expression ratio image (ERI) [Liu et al. 2001] and hallucinate the

hidden region directly using the teeth from the source video. These

operations could unavoidably introduce undesired artifacts. This

is because both the teeth transfer and ERI technique require the

source and target faces to merit certain similarities in shape, pose,

and ine details, otherwise the transferred details from the source

cannot be blended well with the target (e.g., the outlier detection

in ERI could fail if the two faces difer too much (Fig. 8, the third

row)), leading to undesired artifacts such as unnatural wrinkles,

residual shadows, or incompatible teeth (Fig. 8). We handle both of

the problems using data-driven approaches to alleviate the artifacts

inherited in these heuristics. Since facial detail synthesis and hidden

region hallucination are two diferent tasks, i.e., one is to add details

to the face while the other is to ill in the missing parts, learning a

uniied generative model may bring in additional challenges (see

Section 5.1). We train two generative networks for the two tasks

separately.

4.1 Refining Warped Face with wg-GAN

Portrait photos are usually taken with a focus on the facial expres-

sion but often with diverse background elements such as clothes,

environments, light conditions, and hairstyles, which pose potential

challenges for a generative model to learn all these convoluted vari-

ations. Thus, to avoid the deiciencies in network learning, we focus

on the facial regions and leave the 2D global warps [Averbuch-Elor

et al. 2017] to delegate the rest transformations.

We exploit a typical conditional GAN framework with a generator

networkG which we call the face reinement network for the purpose

of reining a warped face image with ine details and a discriminator

networkD for the purpose of discerning if a synthesized facial image

from G is real or fake. Here, we have a few key issues to consider

when designing our network architectures. First, the warped iducial

structure needs to be maintained to mimic the desired expression,

i.e., the warped position of the eyes, nose, mouth, etc., since our

humans are extremely sensitive to subtle changes in these regions.

Second, the generator should be able to generate images that retain

high-idelity of the original face with all necessary details such as

wrinkles, creases, and illumination conditions. Finally, the network

should be eicient enough to enable real-time performance.

The conditional GAN model consumes a cropped face region

which is warped and without the inner mouth region, together with

a displacement map which serves as a guidance of the underlying

facial global and local transformations (see Fig. 4), and generates a

facial image with full synthesized details except the inner mouth

region. As for the ground truth images for network training, we

crop the real faces and remove the inner mouth region as well. As

in [Song et al. 2017], we rectify the face before feeding into the

network.

Displacement map generation. The displacement map is an es-

sential element serving in our network design. It carries pixel-wise

nonlinear transformations and serves as a condition for the network.

We generate our displacement map as follows. For each landmark

on the cropped warped image Iw , we compute its ofset from the

rest pose I . We note that the movements of the major facial compo-

nents during a facial expression are anisotropic. For example, the

displacements at the eyebrow region are typically much smaller

than the ones around the mouth. Thus if we use the original values

of displacements, the displacement of eyebrows may get ignored by

the network. So we normalize the displacements of each semantic

parts individually. Speciically, taking the eyebrow for an example,

we compute the standard variance of its landmark displacements

(the standard variance is computed among all training images) and

use it to normalize the displacement vectors of the eyebrow (the

normalized values follow a normal distribution). We then interpo-

late the ofsets to the whole image of Iw based on the triangulation

of the image using these landmarks (Fig. 4).
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The architecture of our wg-GAN network is shown in Fig. 3.

We mark the facial region of the input face (determined via land-

mark points) and discard output pixels that are outside the mask re-

gion. The architecture of the reinement network follows an encoder-

decoder structure. To preserve the network from compressing too

much of the information, we only downsample the image to 1/4

of its original resolution (see the irst 3 convolutional layers of the

reinement network). The convoluted images are then sent through

four residual blocks [He et al. 2016]. The residual block is commonly

used for eicient training of deep structures. Afterward, the output

is restored to the original resolution using resize-convolution lay-

ers instead of deconvolution layers to avoid the łuneven overlapž

problem commonly happening in deconvolution [Gauthier 2014].

We also add skip-connection between the irst and last two convo-

lutional layers to preserve the image structure as much as possible

[Isola et al. 2017].

The discriminator network takes as input a reined face image

or a real face image with the corresponding displacement map and

compresses the images through convolutional layers into small

feature vectors, which are sent to a fully connected layer to predict

a continuous value indicating the conidence of the image being

Fig. 4. Displacement map generation. Let: initial displacements of facial

landmarks computed from the driving source; middle: adaptively normalized

displacements of facial landmarks; right: computed facial displacement map.

Original photo courtesy of Pedro Haas.

real. It consists of six convolutional layers whose output is lattened

to a 32768-dimensional vector (see the bottom of Fig. 3). Similar to

the reinement network, we use 7×7 and 5×5 kernel sizes in the irst

two convolution layers respectively while using 3×3 kernels for all

the rest layers. All layers in both the reinement network and the

discriminator network use Leaky Rectiied Linear Unit (LReLU) as

activation function [Maas et al. 2013] except for the last layer of the

reinement network where sigmoid function is used to output values

in the range of [0, 1], and the last layer of the discriminator network

where no activation function is used. We use stride sizes of 2 when

downsizing the image and 1 otherwise.

Loss Function. Let R(xw ,M) denote the reinement network in

a functional form, with xw the input warped image and M the

displacement map. For the reinement network, we use the L1 loss

between the reined face image R(xw ,M) and the ground truth

face image xд as a regularization term that penalizes large changes

between the real and reined facial regions:

L(R) = Exw ,M ,xд ∥R(xw ,M) − xд ∥1. (1)

For the adversarial loss of discriminative net, we use the loss func-

tion of Wasserstein GAN [Arjovsky et al. 2017] for stable training:

min
R

max
D
Exw ,M ,xд [D(xд,M) − D(R(xw ,M),M)]. (2)

The two loss functions are combined together to inally train our

wg-GAN:

min
R

max
D
Exw ,M ,xд [αL(R) + D(xд,M) − D(R(xw ,M),M)], (3)

whereα is a weighing hyper parameter and is 0.004 in our implemen-

tation. To improve the stability of adversarial training, we follow the

work of [Shrivastava et al. 2017] to update the discriminator using

a history of reined images plus the ones in the current mini-batch.

Training data. Our training data are collected from video se-

quences. Given a video sequence starting from a rest expression,

we detect facial landmarks for every 10th frame and generate the

warped image for the frame. Then for each training image, we obtain

its ground truth (real frame), warped image, and the displacement

ACM Trans. Graph., Vol. 37, No. 6, Article 231. Publication date: November 2018.
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Fig. 5. Let: cropped coarse face image ater global 2D warps; middle: face

image ater the facial refinement using wg-GAN (note the fine details around

the eyebrow and the noise); right: result ater inner mouth hallucination.

Original photo courtesy of Pedro Haas.

map. We gather such training data from public datasets including

MMI [Pantic et al. 2005; Valstar and Pantic 2010], MUG [Aifanti

et al. 2010], and CFD [Ma et al. 2015]. We ind some videos in MMI

dataset are captured under undesirable conditions (e.g., side view,

changing lighting condition, or rather low resolution), so we select

390 sequences from them as training data, which includes 35 people

with 3-20 expressions. For MUG, we gather 329 sequences of 47 peo-

ple, each with 7 expressions. We also gather 158 people as training

data from CFD which typically consists of 4 images for one person

with diferent expressions. Similar to G2GAN [Song et al. 2017], we

augment the training data by lipping and random cropping, please

refer to [Song et al. 2017] for details.

4.2 Hidden Region Hallucination with hrh-GAN

To fully synthesize a realistic mouth inner region, we take the global-

and-local learning-based inpainting approach of [Iizuka et al. 2017].

In their method, a fully convolutional network is designed as gen-

erator network to complete images, which is concatenated with

two discriminator networks: a global discriminator network to en-

sure the generated image to be coherent as a whole and a local

discriminator network to ensure local patch consistency. We take

the same network structure as theirs and employ it for our purpose

of inner-mouth synthesis. We call the hidden region hallucination

network hrh-GAN for short in our context.

The input of the inpainting network is a cropped face without the

inner mouth region, and the network will generate a complete face

with teeth and tongue inside the mouth. We use both the training

data derived from MMI, MUG, and CFD as well as portrait images

collected from the internet. In total, we gather 6211 images for the

network training. From those training images, the mask of łhiddenž

inner mouth region is computed with the detected landmarks. Simi-

lar to [Iizuka et al. 2017], the loss function of the network includes a

Mean Squared Error (MSE) loss that minimizes per-pixel diference

between the generated image and the ground truth image within the

mask, a global GAN loss that measures the reality of the whole face

and a local GAN loss that measures the reality of the local mouth

region (see details in [Iizuka et al. 2017]). We also use lipping and

random cropping to augment the training data.

Since our training data size is signiicantly smaller than that used

in [Iizuka et al. 2017], a direct training of 256×256 resolution could

lead to unnatural outputs. To alleviate this, we follow the work

of [Karras et al. 2017] to train the GAN hierarchically from low

resolution to high resolution. Speciically, we irst train the hrh-

GAN using our training data with the resolution of 128×128. We

keep the network architecture the same as [Iizuka et al. 2017] in

this step. Then in the second step, we replace the irst convolutional

layer (128×128×3→ 128×128×64) with three convolutional layers

(256×256×3→ 256×256×16→ 256×256×32→ 128×128×64). The

output layers are modiied similarly while the intermediate layers

are kept the same. Finally, the whole network is ine tuned to adapt

to the resolution of 256×256. We ind this adaption works well in

practice. Fig. 5 right shows the results of inner-mouth hallucination.

5 EXPERI℧ENTAL RESULTS

We implement our algorithm in Python and Cuda on a desktop with

an Intel Core i7-4790 CPU (3.6 GHz) and a GeForce 1080Ti GPU

(11GB memory). We use the TensorFlow framework [Abadi et al.

2016] for our network implementation.

Transferring the expression from a source frame of 640×480 pixels

to a target image of 640×480 pixels takes about 55 milliseconds in

total, where the warping takes about 12 milliseconds, the reining

net takes about 11 milliseconds and the inpainting net takes about

9 milliseconds. The rest computations are mainly with the face

tracking and CPU-GPU communication. We do not require any

precomputation, thus our algorithm can be used for real-time facial

reenactment. Please refer to supplementary videos for our real-time

demo.

We evaluate our algorithm on challenging internet portraits ob-

tained from Flickr and Unsplash covering people with diferent

genders, ages, skin colors and backgrounds (Fig. 13). The source

expressions are obtained from the video sequence in the MMI Facial

Expression Database, MUG Database, and our own captured data.

In Fig. 13 we demonstrate some sample source driving frames and

the corresponding transferred expressions. Please refer to our sup-

plementary video for full results. The results show that our method

is able to consistently produce natural expressions in analogy to the

source frame for all the tested examples.

For better understanding our algorithm pipeline, we also illus-

trate intermediate results of diferent stages in our pipeline (see

Fig. 14). It can be observed that the lightweight 2D warps are indeed

able to provide a good global structural transformation for the de-

formed face while ensuring consistency with the backgrounds. Our

reinement network then efectively reduces the artifacts from warp-

ing and adds more natural details. Finally, the inpainting network

hallucinates compatible teeth and tongue for the new expression.

5.1 Evaluation

Evaluation on warping and displacement map. To illustrate the efec-

tiveness of our warp-guided network architecture, we experiment

with various alternative solutions. Speciically, we examine how the

results could degenerate if we do not perform the warp on the facial

image or do not use the displacement map. LetW denote warped

face image, and M denote displacement map. We alternatively train

our network by switching on⁄of betweenW andM by preparing

diferent training inputs. For example, [W−,M+] means training

with unwarped face image and displacement map while [W+,M−]
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Driving frame [W-, M-] [W-, M+] [W+, M-] [W+, M+]

Fig. 6. Experiments with warping and displacement map. The results get

degenerated without either warping or the displacement map. From top

to botom, original photos courtesy of Gert Defever and Antoine Lassalle

Photography AntoineLphotos.com.

means training with warped face image but without displacement

map.

Fig. 6 shows some visual examples. The results show that using

the unwarped image without the displacement map, the transferred

expression remains almost neutral. This is because without any con-

ditions on the network, the network is not aware of any underlying

geometric transformations thus it fails to transfer the expression

and synthesize the details. Using the unwarped image with the dis-

placement map, there will be a lot of artifacts on the regions with

large motions (e.g., the widely opened eyes and mouth). This is

because the network has to hallucinate these regions that do not

exist on the neutral face; similarly, using the warped image without

displacement map, many detailed wrinkles are not transferred cor-

rectly, because the network again loses guidance of the nonlinear

displacements for facial pixels. The warped facial image, together

with the displacement map, should be seamlessly integrated to guide

the network to generate realistic results.

Evaluation on the hierarchical facial reinement. To validate our

design of adopting two generative adversary networks to produce

natural faces, we have also done an experiment which uses wg-GAN

to simultaneously recover the face details and hidden regions (i.e.,

teeth and tongue) from a warped image. We use the same input

of a warped image and a displacement map and train our network

using the same training data as before (i.e., MMI + MUG + CFD),

and compare the results on the test data. For a fair comparison, we

also train our inpainting network using the data from MMI, MUG

and CFD only. As shown in Fig. 7, coupling both the task of detail

reinement and hidden region hallucination in a single architecture

will signiicantly impose challenges and confusions to the deep

neural network. The single GAN generates teeth which have much

more artifacts than those obtained from the hrh-GAN.

5.2 Comparison

We compare our results to the state-of-the-art video-to-image reen-

actment techniques [Averbuch-Elor et al. 2017; Thies et al. 2016]

and the method of G2-GAN which exploits geometric guidance for

expression synthesis. Since the authors did not release the source

code, we implement their algorithms. Our wg-GAN is trained with

Fig. 7. Evaluation of the hierarchical network refinement. From let to

right: driving frames; target frames in neutral expression; results with facial

refinement and inner mouth hallucination through a single wg-GAN; and

results with our two-GAN framework.

coherent facial expressions extracted from videos thus the tempo-

ral coherence is inherently guaranteed when applied to videos. To

ensure the temporal coherence of the hidden region hallucination

among consecutive frames, we blend two frames in texture space

after optic low alignment similar to [Thies et al. 2016].

Comparison with BP2L.We evaluate our algorithm on the inter-

net images collected from Flickr and Unsplash as target images

and compare our results with the ones from [Averbuch-Elor et al.

2017]. The results are shown in Fig. 8. Please see the supplementary

video for the full animation. Note for a fair comparison, we use the

same landmarks as [Averbuch-Elor et al. 2017]. We can see that our

method can efectively reduce the artifacts due to image warping

and produce natural wrinkles and teeth. Speciically, in the top row,

when the teeth of the source person difers a lot from the target

person, transferring the teeth from source to target will bring in-

evitable artifacts. Since our method does not rely on the teeth from

the source video, we can generate more compatible teeth from our

trained generative neural network. In the second row, our method

efectively reduces the artifacts of closing eyes caused by warping.

In the third row, as the beard and nasolabial folds are connected

on the source face, the detail transfer algorithm based on ERI in

[Averbuch-Elor et al. 2017] failed to clean the beard, resulting in

a dark region above the mouth, while our results are natural and

clean. In the fourth row, our method keeps the size of eyeball well,

while in [Averbuch-Elor et al. 2017], the eyeballs are stretched due

to warping. In the bottom row, our generative network is able to

synthesize frown lines which do not exist in the source.

Another beneit of our method is that our facial reenactment

does not rely on the resolution of the driving frame. As illustrated

in Fig. 9, the face sizes of driving frames are about 130×174 pixels
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Fig. 8. Comparison of our method with prior work. From let to right, the

source, the target, [Averbuch-Elor et al. 2017], [Thies et al. 2016], and our

method. From top to botom, original photos courtesy of Christopher Camp-

bell, Clarisse ℧eyer, Corey ℧ota, Alexandre Croussete, and Albert Dera.

and 120×160 pixels separately, and the target face sizes are about

200×280 pixels and 230×310 pixels. If we transfer the source teeth

to the target face as [Averbuch-Elor et al. 2017], the smaller teeth

are scaled to it the larger mouth, causing the blurred teeth in the

target. In contrast, our generative neural network is able to produce

the teeth suitable for the target resolution.

Comparison with Face2Face. We have also compared our algo-

rithm with the state-of-the-art video-to-video reenactment tech-

nique [Thies et al. 2016]. We perform comparisons on the portrait

images downloaded from the internet. The results are shown in

the 3rd column of Fig. 8. Note the diferences between the warping

results of [Thies et al. 2016] and [Averbuch-Elor et al. 2017] are due

to the diferent landmarks they used. In the work of [Thies et al.

2016], they construct a mouth dataset from the target input video.

Since we only have one target image, we follow [Averbuch-Elor

et al. 2017; Thies et al. 2016] to extend the work by constructing a

mouth database from the source sequence, and then perform mouth

retrieval and blend the best mouth to the target. We can see that,

because the method of [Thies et al. 2016] is also warping-based, the

results unavoidably contain artifacts as mentioned above.

Comparison with G2-GAN. The work of [Song et al. 2017] uses a

generative adversarial network to synthesize new facial expressions

Fig. 9. Our method is insensitive to image resolutions. From let to right,

the source, the target, [Averbuch-Elor et al. 2017], and our method. The

incompatible image resolutions between the source and the target causes

the blurred teeth in [Averbuch-Elor et al. 2017]. From top to botom, original

photos courtesy of Gert Defever and Roman Akhmerov.

for a frontal-looking face. The input of the network is the face image

with the neutral expression and the facial landmarks of the target

expression. For a fair comparison, we use the same face image and

target landmarks as in [Song et al. 2017] to generate the warped

image and displacement maps for our networks. The authors have

kindly given us the source code for the network they used in the

paper, which aims to process images of 128×128 pixels, so we resize

the images of MMI, MUG, and CFD to 128×128, and use the same

training data to train the network of [Song et al. 2017] and ours.

Some results on the test data are shown in Fig. 10. Since the method

of [Song et al. 2017] does not perform warping on the whole image,

we crop the facial regions for comparison.We can see that our results

are much cleaner than the results of [Song et al. 2017], especially

in the region of eyes and mouth. The results again conirm our

observation, that recovering the global structure, local details, and

hidden mouth regions together using a single neural network is very

challenging. Decomposing the problem to multiple steps makes it

much easier for deep neural networks to learn the highly nonlinear

geometric transformations. Moreover, only providing the geometric

Fig. 10. Comparison of our method (the 4th and 7th columns) with [Song

et al. 2017] (the 3rd and 6th columns).
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target phototarget photo

Fig. 11. Limitations of our work. Our method could fail to generate faithful

results when large motion in the head and body occurs or a large portion of

the facial region gets occluded by hairs. Note the distorted hairs and neck

on the let example, and the broken hairs and imperfect teeth in the inner

mouth region of the portrait in the right example. From let to right, original

photos courtesy of ℧aria Badasian and Fabian Albert.

position of the landmarks does not factorize out the geometric

transformations exhibited in facial expressions and could introduce

artifacts.

5.3 User Study

Following [Averbuch-Elor et al. 2017], we conduct two pilot studies

to quantitatively evaluate the quality of our results and compare

with the method of [Averbuch-Elor et al. 2017]. We randomly se-

lected videos from the MUG Facial Expression Database [Aifanti

et al. 2010] containing videos of persons expressing various emo-

tions. Similar to [Averbuch-Elor et al. 2017], 4 subjects were selected

which had a complete set of the following four emotions: anger, fear,

surprise, happiness. We generated the animated videos by selecting

the irst video frames to be the target images and driving these

target images by one of the 3×4 (3 other subjects and 4 available

emotions) driving videos.

We recruited 33 participants (15 females) in the age range of 20-40.

The participants were presented with 30 randomly selected videos

(6 of them were real, 12 of them were animated videos generated

with our method and the rest were generated by the method of

[Averbuch-Elor et al. 2017]). The participants were allowed to watch

each video only once, to evaluate their irst impression. In the irst

study, the participants were asked to rate them based on how real

the animation looks. As in [Averbuch-Elor et al. 2017], we used

the same 5-point Likert range of scores: very likely fake, likely fake,

could equally be real or fake, likely real, very likely real. In the second

study, the participants were asked to rate the videos based on how

close the animation looks to a particular emotion. We also used

the 5-point Likert range of scores for a particular emotion. Take

the emotion anger for example, the Likert range of scores are: very

likely not angry, likely not angry, could equally be angry or not, likely

angry, very likely angry. We did not normalize the diferences in

individual aptitude.

The results of the user studies are illustrated in Table 1. The stud-

ies show that 88% of the real videos were identiied as such (were

rated as either likely real or very likely real). Our animated videos

were identiied as real 62% of the time while the animated videos

generated by the method of [Averbuch-Elor et al. 2017] were identi-

ied as real 40% of the time. Similar results are shown for particular

emotions (on average: 84%:64%:53%). The łhappyž animations were

perceived as the most real and expressive (identiied as real 66% of

Fig. 12. The results of self-expression recovery. Top row shows the original

sequence while the botom row shows the corresponding recovered results

by our method.

the time and identiied as happy 76% of the time), while the łsur-

prisež animations were perceived as the least real (identiied as real

55% of the time) and the łangerž animations were perceived as the

least expressive (identiied as angry 45% of the time). Nevertheless,

our method consistently outperforms the method of [Averbuch-Elor

et al. 2017] in both tests.

5.4 Limitations

Our method has a few limitations. First, we allow the movements of

the head and body parts of the portrait, however, the range is limited

as in [Averbuch-Elor et al. 2017] due to the 2D warping (see Fig. 11).

To allow for full motions of these parts requires more sophisticated

approaches to inpaint the missing regions caused by large motions.

An option could be the technique used in the concurrent work of

[Kim et al. 2018]. Second, as currently our training datasets were

taken in a frontal neutral pose, our method requires the portrait

photo to be taken in a frontal pose. In the future, it is possible to

allow target images with other expressions and non-frontal poses

by training the network with more diverse data. Third, since our

method is built upon generative models which are trained on real

images, it could fail to generate realistic results for unseen data such

as cartoon and ancient painting portraits, or when large occlusion

occurs in the face region (e.g., Fig. 11 right). In addition, the network

synthesis procedure, by nature, is not able to recover exactly the

same details as the original face and may cause some deviation from

the source expression (see Fig. 12).

6 CONCLUSION

We have introduced a novel method for real-time portrait anima-

tion in a single photo. Our method takes as input a single target

portrait photo with the face in the neutral-frontal pose and gen-

erates photo-realistic animations mimicking a driving source. Our

method leverages lightweight 2D warps and generative adversarial

networks for high-idelity facial animation generation. Our genera-

tive network is conditioned with geometric transformations merited

in the 2D warps, and can instantly fuse ine-scale facial details onto
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Table 1. The user study results. The rankings (1-5) signify low (very likely fake⁄not angry, etc.) to high (very likely real⁄angry, etc.) scores.

Realism

Real Videos Our Method [Averbuch-Elor et al. 2017]

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Happy 0.04 0.08 0.02 0.34 0.52 0.08 0.12 0.14 0.38 0.28 0.24 0.30 0.17 0.20 0.10

Fear 0 0.02 0.04 0.33 0.6 0.08 0.12 0.17 0.40 0.24 0.13 0.3 0.19 0.22 0.16

Anger 0 0.12 0.04 0.33 0.51 0.03 0.17 0.16 0.36 0.28 0.07 0.15 0.18 0.36 0.24

Surprise 0.04 0.04 0.02 0.39 0.51 0.07 0.24 0.15 0.36 0.19 0.21 0.30 0.16 0.26 0.07

Average 0.08 0.06 0.03 0.35 0.54 0.06 0.16 0.15 0.37 0.25 0.16 0.26 0.17 0.26 0.14

Expressiveness

Real Videos Our Method [Averbuch-Elor et al. 2017]

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Happy 0.02 0.02 0.03 0.31 0.62 0.05 0.06 0.14 0.32 0.44 0.04 0.13 0.17 0.48 0.19

Fear 0 0.06 0.06 0.4 0.49 0.06 0.17 0.19 0.40 0.17 0.12 0.28 0.34 0.24 0.02

Anger 0.07 0.11 0.20 0.41 0.20 0.11 0.20 0.25 0.35 0.1 0.07 0.18 0.28 0.38 0.10

Surprise 0.02 0.02 0.02 0.41 0.53 0.03 0.10 0.09 0.42 0.35 0.05 0.08 0.16 0.53 0.18

Average 0.11 0.051 0.079 0.38 0.46 0.06 0.13 0.17 0.37 0.27 0.07 0.17 0.24 0.41 0.12

a warped face image in a high realism manner. Unlike the concur-

rent work of [Kim et al. 2018], our network is generic and does not

rely on contents of either a source driving video or the target photo

(video).

Our pipeline achieves signiicantly better results than the state-of-

the-art methods towards ine-scale detail synthesis such as wrinkles,

creases, self-shadows, and teeth, etc., thanks to our carefully de-

signed global-and-local paradigm with conditional generative adver-

sarial neural networks. The utilization of lightweight 2D warps and

GPUs in neural nets also enables our method to operate in real-time.

A number of experiments showed that our approach is suitable for

realtime face reenactment in a single photo. In the future, we plan to

explore more sophisticated portrait animation techniques through

generic inpainting techniques (e.g., towards the background), or

leveraging 3D face and hair databases for high-idelity portrait ani-

mation in images.
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