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(a) A forward roll transformed to a dive roll. (b) A cartwheel retargeted to an Asimo-like robot. (c) A walk transformed onto a balance beam.

Figure 1: Physically based motion transformation and retargeting.

Abstract

Human motions are the product of internal and external forces,
but these forces are very difficult to measure in a general setting.
Given a motion capture trajectory, we propose a method to recon-
struct its open-loop control and the implicit contact forces. The
method employs a strategy based on randomized sampling of the
control within user-specified bounds, coupled with forward dynam-
ics simulation. Sampling-based techniques are well suited to this
task because of their lack of dependence on derivatives, which are
difficult to estimate in contact-rich scenarios. They are also easy
to parallelize, which we exploit in our implementation on a com-
pute cluster. We demonstrate reconstruction of a diverse set of cap-
tured motions, including walking, running, and contact rich tasks
such as rolls and kip-up jumps. We further show how the method
can be applied to physically based motion transformation and re-
targeting, physically plausible motion variations, and reference-
trajectory-free idling motions. Alongside the successes, we point
out a number of limitations and directions for future work.

1 Introduction

Motion capture has been widely used for generating high quality
character animations. However, it remains expensive because of the
equipment and space required, as well as frequently requiring te-
dious manual post-processing of the data. Contact-rich motions are
particularly difficult to capture and edit afterwards. Self-contacts
or occlusions caused by contacts with the environment pose serious
problems for optical motion tracking systems. Post-processing such
motions is challenging even for professional animators because of
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the simultaneous existence of many contact constraints. Moreover,
manually fixing violated kinematic constraints can easily destroy
the physical realism of the original motion. Delicate spatiotemporal
relationships are embedded in the motion dynamics among all the
degrees of freedom (DoFs) for goal-oriented tasks such as rolling.

Reusing and generalizing captured motions or keyframed motions
is the focus of much animation research today [Kovar et al. 2002;
Kim et al. 2009]. Of all such efforts, physics-based animation tech-
niques promise broader generalizations while preserving physical
realism [Sok et al. 2007; Yin et al. 2007; Muico et al. 2009; Mac-
chietto et al. 2009]. Spacetime trajectory optimizations incorpo-
rate physical constraints while searching for or transforming tra-
jectories [Witkin and Kass 1988; Liu et al. 2006]. Optimization
while tracking reference trajectories during simulations can gen-
erate high quality motions [Muico et al. 2009; Macchietto et al.
2009]. However, the contact states of the generated motions can-
not deviate significantly from the reference trajectory. Proportional
derivative (PD) control coupled with realtime foot placement feed-
back can provide robust locomotion, e.g., [Yin et al. 2007], but it
is not clear if it generalizes to other tasks. Our goal is to develop
a general method that can compute controls for multiple types of
tasks, some of which do not have well-defined, repeatable contact
states. A caveat will be that our results are computed offline.

We propose to reconstruct the control underlying a motion by cast-
ing it as a search problem that seeks to follow a given reference
trajectory. Randomized sampling supports this search by creat-
ing a diverse set of motion sequences from which a ‘best track-
ing’ path can then be selected. Our use of sampling is inspired by
past successes of sampling-based strategies in robot motion plan-
ning [Tsianos et al. 2007], passive animation [Chenney and Forsyth
2000; Twigg and James 2007] and active animation [Sims 1994;
Wang et al. 2009].

When used for optimization, sampling-based approaches do not de-
mand derivative computation, in contrast to gradient-based tech-
niques. This is useful when derivatives are hard or impossible to
compute. Many physics-based animation systems are developed on
top of third-party simulators, which can preclude the computation
of analytic derivatives. It is also well-known that derivatives are dif-
ficult to compute for tasks with abundant transient contacts, such as
a roll-and-get-up motion. These contacts pose a serious challenge
to inverse dynamics algorithms and gradient-based optimizations.
For situations where gradient computations are plausible, gradient-
based techniques are nevertheless prone to local minima for highly
nonlinear problems in high dimensions. Derivative-free sampling



techniques are not immune to local minima, but they can neverthe-
less often escape a local minimum.

When applied to creating motions, a side benefit of sampling-based
methods is that the stochastic nature of the solution will naturally
exhibit a degree of motion variation. Motion synthesis is often cast
as an optimization problem, based on the assumption that desired
motions are optimal in some sense. However, this ignores the nat-
ural variations that are evident in human motion. Sampling-based
methods can also work to achieve a given goal in the absence of a
reference trajectory, although having one greatly prunes the search
space and accelerates the construction. This allows us to generate
control sequences for non goal-oriented tasks, such as idling, where
a desired trajectory is hard to specify or capture. Sampling schemes
can potentially discover new strategies, given enough computa-
tional resources.

Sampling-based techniques are also easy to parallelize, which is of
importance as multi-core computers and compute clusters become
ever more commonplace. We show that control for complex tasks
can be reconstructed within minutes on small-scale clusters.

2 Related Work

Motor Control: There are several concepts from the field of motor
control that are related to our work: contact dynamics, feedforward
control, and feedback control. Motion and interaction with the en-
vironment are fundamentally intertwined. Contact dynamics, or the
Ground Reaction Force (GRF), is measured and studied intensively
in medicine and sports. These studies focus on balance and lo-
comotion, and analysis rather than synthesis. An interesting recent
method estimates joint torques and a parametric contact model from
motion [Brubaker et al. 2009]. Internal models represent one of
the most successful concepts established in neuroscience in recent
years [Kawato 1999; Jordan and Wolpert 1999], and they suggest
decomposing motor control into a feedforward component and a
feedback component.

Motion Planning: Motion Planning is a well-studied problem in
Robotics. Randomized sampling algorithms for path planning, such
as PRMs (Probabilistic Roadmap Methods) [Kavraki et al. 1996]
and RRTs (Rapidly-exploring Random Trees) [LaValle and Kuffner
2000] provide significant benefits in speed and robustness over con-
ventional deterministic planning algorithms. The computer anima-
tion community has adopted these ideas for locomotion planning
and manipulation planning [Choi et al. 2003; Yamane et al. 2004].
Trajectory planning, also called kinodynamic planning, is a more
difficult task than path planning [LaValle 2006]. A trajectory is a
path with a time constraint. Thus while path planning only needs to
consider kinematic constraints, trajectory planning has to take dy-
namic constraints into account. In this paper, we reconstruct con-
trols to produce plausible trajectories.

Sampling-based Passive Animation: Sampling physically plausi-
ble simulations to satisfy user constraints is demonstrated to be ef-
fective for passive rigid body systems [Chenney and Forsyth 2000;
Twigg and James 2007]. Sampling in a precomputation stage helps
achieve real-time control of deformable objects and fluids at run-
time [James and Fatahalian 2003; Barbič and Popović 2008].

Sampling-based Character Control: More relevant to our work is
the use of local stochastic search and genetic algorithms with built-
in randomness that can develop interesting behaviors or morpholo-
gies for virtual creatures [Van de Panne and Fiume 1993; Ngo and
Marks 1993; Sims 1994]. Stochastic optimization has also been
explored for constructing and adapting controllers for bipedal lo-
comotion [Hodgins and Pollard 1997; Sok et al. 2007; Yin et al.
2008]. More recently, sampling-based optimization methods, such
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Figure 2: Collision geometries and DoFs of our character model
(a) and robot model (b). Purple dots denote 3-DOF ball joints, and
blue spindles denote 1-DOF hinge joints . There are 50 DoFs in
total for the character model, and 35 DoFs in total for the robot
model, including the global root position and orientation.

as the covariance matrix adaptation strategy, have been shown to be
effective in optimizing walking controllers [Wang et al. 2009] and
generating optimal gaits and morphologies for animal locomotion
when combined with traditional derivative-based continuous opti-
mization [Wampler and Popović 2009].

The work of [Sharon and van de Panne 2005; Sok et al. 2007] are
the closest in spirit to our own. Sharon and van de Panne [2005] ap-
ply a deterministic coordinate-descent method to optimize the con-
trol as best as possible to match target walking motions. The opti-
mization proceeds using multiple episodes of increasing simulation
duration to deal with overly large search spaces and undesired local
minima. Sok et al. [2007] demonstrates control reconstruction for
2D locomotion tasks. Their method randomly chooses initial con-
figurations and uses a downhill simplex method to find local min-
ima. However, the relative benefits of the random initialization and
the local optimization are difficult to quantify, and local optimiza-
tion procedures have a sequential nature that makes them hard to
parallelize. Our algorithm demonstrates successful reconstruction
for challenging 3D contact-rich motions by focussing its resources
fully on stochastic sampling.

3 Sampling-based Control Construction

We now detail our sampling-based method for reconstruction of a
motion capture trajectory. We begin with a description of the mo-
tion data and our character models.

3.1 Motion Data and Character Models

We use motion capture data from the CMU motion capture
database, data of published works, data captured by ourselves, and
example trials that came with our motion capture software. These
motions demonstrate various tasks and were captured from differ-
ent subjects by different groups, with different capture process and
data postprocessing, and contain varying degrees of noise. A con-
trol reconstruction method thus needs to be flexible and robust to
handle them all.

Our character model, shown in Figure 2(a), is 1.7m tall and weighs
62.5kg. Its detailed kinematic and dynamic parameters can be
found in Table 1 and Table 2. To incorporate motion data com-
ing from different sources, this biped model has a total of 50 DoFs.
Motions captured from different human subjects will be dynami-
cally retargeted to this model, directly by our control reconstruction
algorithm, and no kinematic retargeting preprocess is done before-
hand. Our Asimo-like robot model, shown in Figure 2(b), is 1.2m



Segment Mass (kg) Inertia (kg ·m2)
head 5.494 3.441×10−2,2.210×10−2,3.441×10−2

clavicle & scapula 2.399 5.062×10−3,8.265×10−3,8.265×10−3

upper arm 1.814 2.173×10−3,9.104×10−3,9.104×10−3

lower arm 1.526 1.640×10−3,6.753×10−3,6.753×10−3

hand 0.4588 3.766×10−4,1.597×10−3,1.274×10−3

trunk 14.31 1.300×10−1,1.601×10−1,2.122×10−1

pelvis 4.836 1.620×10−2,4.732×10−2,4.022×10−2

thigh 6.524 8.714×10−2,1.709×10−2,8.714×10−2

shin 4.612 5.565×10−2,8.931×10−3,5.565×10−2

foot 1.612 9.479×10−3,9.706×10−3,1.714×10−3

Table 1: The dynamic properties of our character model.

Joint kp kd
Strength Sampling Contact

Scale Window Scale
neck 100 10 1.0, 0.4, 1.0 0.2, 0.2, 0.2

sternoclavicular 300 30 0.1,1.0,1.0 0.1, 0.1, 0.1
shoulder 100 5 0.2, 1.0, 1.0 0.2, 0.2, 0.2 3.0

elbow 100 5 0.2, 1.0, 1.0 0.0, 0.0, 0.0 3.0
wrist 20 1 0.1, 1.0, 1.0 0.0, 0.0, 0.0 5.0
waist 1000 100 0.4, 1.0, 1.0 0.2, 0.2, 0.2
hip 300 30 1.0, 0.2, 1.0 0.4, 0.4, 0.1

knee 300 30 1.0 0.2
ankle 100 10 1.0, 1.0, 0.5 0.4, 0.2, 0.1 1.0∼5.0

Table 2: The PD control parameters and sampling window size (in
Radian) for each DoF of each joint of the character model.

tall and weighs 49.5kg. Its dynamic parameters can be found in Ta-
ble 3. We use the triangle meshes rather than geometric primitives
for collision detection. This robot model has a total of 35 DoFs.

Note that one joint can have up to three DoFs, and the inertia around
different axes are usually not identical. To produce joints that have
different strengths in proportion to their associated inertias around
different rotation axes, we scale kp(N/rad) and kd(Ns/rad) with
the scale factors listed in the fourth column of Table 2. Contact
scale is used to increase the stiffness of some weight-bearing joints
when in contact with the ground, to propel the body in certain tasks.
For example, the ankle joints can be weak for rolling motions, but
need to be stronger for running, or else the character may not be
able to run forward due to a lack of thrust. Alternatively we can use
strong joints all the time, but this can result in stiff-looking motions
and is not in accordance with the changing stiffness observable in
human muscles and joints.

3.2 Trajectory-based Sampling

3.2.1 Control Representation

We use target poses for PD-servos (Proportional Derivative) to rep-
resent motion controls. At every instant of time, the desired angle θ̃

of a DoF is taken from a desired pose, and the joint torque is calcu-
lated as τ = kp(θ̃−θ)−kd(θ̇), to drive the current angle θ towards
the desired value. When there is a reference motion, θ̃i = m̃i(t) is
taken from the trajectory of the corresponding DoF i at the corre-
sponding instant of time t.

Naive tracking of a reference trajectory with PD controllers at the
joints is typically unsuccessful for several reasons. First, the cap-
tured motions are noisy and sometimes not even physically plau-
sible. Second, the kinematic and dynamic properties of our biped
model differ from those of the human subjects from whom the mo-
tions were captured. Third, there are various modeling errors as-
sociated with a rigid body simulator, including driving an oversim-
plified rigid biped model with simple PD-servos. We specifically
note two problems of PD-servos. One is that the use of constant
kp,kd parameters is problematic for diversified tasks. For exam-

Joint kp kd
Strength Sampling Contact

Scale Window Scale
neck 40 4 1.0 0.0

shoulder 100 10 0.15, 1.0, 1.0 0.8, 0.8, 0.25 3.0
elbow 100 10 1.0 0.2 3.0
wrist 10 1 0.1, 0.4, 1.0 0.0, 0.0, 0.0 3.0
hip 500 50 1.0, 0.2, 1.0 0.8, 0.1, 0.4

knee 300 30 1.0 0.6
ankle 200 20 1.0, 1.0, 0.5 0.6, 0.6, 0.05 1.0∼3.0

Table 3: The PD control parameters and sampling window size (in
Radian) for each DoF of each joint of the robot model.

ple, the shoulder and elbow joints can be relaxed during a walking
motion. In contrast, if the arms are needed during a motion to sup-
port the weight of the whole body, they have to be strong and stiff.
Therefore we scale the stiffness and damping parameters according
to the desired task, as indicated by the last column of Table 2. An-
other problem of PD-servos is that they are simplified mechanical
models of the complex biological neuromuscular actuation systems.
They only react to errors and do not produce feedforward torques.

Because of data noise, model discrepancies, and modeling errors,
tracking a reference trajectory directly by PD-servos will usually
fail to reproduce the desired motion. For example, when tracking
a walking motion, the virtual character usually falls within one or
two steps. When directly tracking a sideways roll, the character
cannot roll more than 40 degrees. It is thus necessary to modify
the reference trajectory properly. Hereafter we denote the reference
trajectory as m̃, displacements to the reference trajectory as m̂, and
the simulated motion as m.

3.2.2 Sampling Algorithm and Parallelization

We begin with several definitions. In a multibody system, we de-
fine a pose as the aggregation of all the internal joint angles and
the root orientation at a particular time. A sample is defined by a
pose displacement, that when added to a pose, forms a new pose.
For convenience, we also use sample to refer to the displaced new
pose. A pose or sample only contains positional information. For a
dynamically simulated system, we also need to consider the state,
which contains both position and velocity information of the sys-
tem.

Given a starting state ss on the reference trajectory at time t, we
now consider possible states of the system at time t +∆t. The pos-
sibilities are illustrated in Figure 3(a). Given a target state st on the
trajectory at time t +∆t, we can drive the system towards the pose
sa0 associated with this target state, using PD-servos. The state re-
sulting from the simulation, se, however, is likely to drift away from
st . Our algorithm then samples in the vicinity of sa0 to produce new
target poses sa1,sa2... for advancing the simulation, and a series of
new end states se1,se2... are generated. We can then select the best
sek, the one closest to st as measured by a cost function to be de-
scribed (§3.2.4), and iterate the process using sek as the start state at
time t +∆t. Progressively advancing the simulation in this fashion
will eventually return a simulated motion m that is hopefully close
to m̃.

Due to the curse of dimensionality, and the large number of DoFs of
our model, we need a sufficient amount of samples at each iteration.
We denote the number of samples for one iteration as nSample. Be-
cause of the existence of noise and model discrepancies, the sample
that achieves the closest end state to the reference state at present
may not be the best one to select in a longer term. We therefore
retain more than one sample at each iteration until the solution pro-
cess has advanced sufficiently far in order to determine which con-
trol samples represent the best control sequence. That is, we save



(a) The sampling process.

(b) The sampling process with feedforward offsets.

Figure 3: The basic and modified sampling process.

Figure 4: Schematic illustration of the sampling process with pa-
rameters nIter = 5, nSample = 10, and nSave = 2. There are five
iterations in total, each using ten samples (orange circles), only two
of which are saved (orange dots) and others are discarded. From
the two saved samples, ten samples are drawn again. The final cho-
sen path is that which has the lowest cost, shown in red.

nSave samples at each iteration. This makes the algorithm more
far-sighted and improves the robustness with respect to the local
minima associated with a constrained unstable system. Each end
state associated with the nSave samples from the last time step is
then used as the start state for the next iteration nSample/nSave
times, so that a total of nSample samples are tested again. This
process is illustrated in Figure 4 with nSample = 10, nSave = 2,
and nIter = 5, where nIter denotes the total number of iterations.

From the above description of the sampling process, we can see that
generating samples and their associated simulations can be done
concurrently. Algorithms 1 and 2 describe our parallel implemen-
tation of the sampling algorithm. S is an array of length nSample,
whose elements consist of all the simulation info (sa,ss,se,c) re-
lated to a sample. As before, sa represents a sample, ss the start
state, se its end state, and c is its cost. SM is the two dimensional
nIter× nSave array of the saved samples. From the element of
SM at the last time step of a motion, we backtrack nSave paths
and select the path of minimal cost as the final sample sequence
m̂ = (...ŝa,t , ŝa,t+∆t , ...).

3.2.3 Practical Implementations

The above section introduces the basic sampling algorithm, which
does not work well for a high-dimensional non-linear constrained
system that is inherently unstable and discontinuous. We develop
several critical strategies to improve the robustness and speed of the

Algorithm 1 : m̂ = job of master(m̃,nIter,nSample,nSave)
Input: reference motion m̃; number of iterations nIter; number of samples per iteration
nSample; number of saved samples per iteration nSave
Output: a list of displacement samples m̂

1: initialize SM[0]
2: for t = 1 . . .nIter do
3: S = null
4: j = 0;k = 0 {initializes counters for sent and received samples}
5: while k < nSample do
6: while (worker = find idle worker()) == null do
7: S = S∪ receive result from worker()
8: k++
9: end while

10: if j <nSample then
11: j++
12: ss← pick start state(SM[t−1]) {picks a start state}
13: send data to worker(worker,WORK,ss, t)
14: end if
15: end while
16: SM[t] =select samples(S,nSave) {selects only nSave samples}
17: end for
18: return m̂← search best path(SM) {returns the path of minimal cost in SM}

Algorithm 2 : calculation of worker(m̃)
Input: reference motion m̃

1: loop
2: (mode,ss, t)=receive data from master()
3: if mode! =WORK then
4: break
5: end if
6: sa← generate sample(m̃, t)
7: (m,se)← simulate(ss,sa, m̃)
8: c← calculate cost(m, m̃)
9: send result to master(sa,c,se) {sends the sample, the cost, and the end state}

10: end loop

search algorithm, and the quality of the synthesized motions.

Approximating Feedforward Torques: As mentioned in Sec-
tion 3.2.1, there are several factors that can cause the simulation
to deviate from the target trajectory during direct PD-tracking. The
force of gravity is one such factor. If we consider the example of
holding an arm in an extended horizontal position, this will require
a sustained torque at the shoulder. However, a PD-controller will
never reach its desired angle in such a situation because it requires
an error in order to generate a torque. It is possible to rely on the
sampling to compensate by adjusting the target position upwards,
but this is not always practical in our high-dimensional control set-
ting. Instead, we systematically offset sa0 by the pose difference
between se and st , and sample around s′a0 rather than the original
sa0 instead. This is illustrated in Figure 3(b), which revises the one-
dimensional case shown in Figure 3(a). Stated in another way, we
compute an offset to the reference target to approximate feedfor-
ward torques, and rely on sampling to generate appropriate torques
that compensate for noise in the tracking trajectory and model dis-
crepancies.

In principle, feedforward torques can be computed using inverse
dynamics techniques. However, inverse dynamics is extremely
challenging for contact-rich tasks due to the unknown contact lo-
cations and contact forces. The proposed offset technique greatly
improves the success rate of the reconstruction and the quality of
the resulted control.

Sampling Time Step: The sampling frequency, determined by ∆t,
does not have to equal the simulation time step. In fact, it is ad-
vantageous to use a lower sampling frequency as long as this does
not overly constrain the control that can be applied. A low sam-



Figure 5: The cost distribution of samples for part of a walk. Sam-
ples tested are shown as a blue +. Saved samples are marked using
a red X, offset to the right. The green solid polyline indicates the
final minimal-cost path.

pling frequency speeds up the reconstruction, and results in more
compact controls. We notice that low control frequencies, rang-
ing between 5∼60Hz, are also adopted in related animation control
methods [Sok et al. 2007; Macchietto et al. 2009]. In this paper,
we use 0.1s for the sampling time step and 0.0005s for the simu-
lation time step. The 10Hz sampling frequency is experimentally
chosen, but not critical to the success of control reconstructions. In
practice, sampling rates lower than 10Hz tend to degrade the syn-
thesized motion quality, while higher rates result in reconstructions
that are slower to compute. Extremely high or low frequencies do
fail, due to nearsightedness or lack of control.

Uniform sampling in time can result in inferior reconstructions
for motions that have inherent semantics. For example, in the
case of locomotion, extremal limb positions and stance-swing-foot
switches are not only visually important, but also mark a change
in direction of the ongoing motion or the introduction of a discon-
tinuity. We mitigate the effects of this by segmenting the motion
at extremal points and contact switching points, which are detected
using a combination of position thresholds and the Kinematic Cen-
troid Segmentation method [Jenkins and Mataric 2003]. Whenever
a fixed time step misses a segmentation point, we adjust the several
time steps before the critical point to guarantee samples at those
moments. The segmentation and time step adjustment are done as
a preprocess before the sampling starts.

Sample Selection and Pruning: In advancing the simulation at a
given time step, we can ideally generate enough samples to cover
the full set of possibilities available to advance forwards from the
current state. However, we cannot possibly sample in a uniform,
dense fashion because of the curse of dimensionality. We therefore
sample randomly from a uniform distribution within a hypercube
around the seed. The length of each dimension of the hypercube is
determined by several factors. First, noisy data and large model dis-
crepancies demand larger sampling windows. Second, more active
joints, such as those actuating contact limbs, usually need larger
windows than free-swing joints. Lastly, smooth local dynamics
generally only require small magnitude perturbations. We tune
the size of sampling windows once, and are able to use the same
windows for reconstructing all the motions we have experimented
with, as shown in Table 2. However, trial dependent specific tuning,
based on the activeness of each DoF for example, can still be useful
in improving the quality of synthesized motions.

In order to avoid a search tree that expands exponentially, we de-
velop a strategy to save a representative fraction of the good sam-

ples at each iteration. A greedy strategy of saving only the best
nSave samples can be problematic because locally following the
reference trajectory may be misleading in the presence of data
noise, model discrepancies, and modeling errors, and result in a
local minima. We follow the principle of diversification to select
samples to save. More specifically, the chosen samples should
cover an appropriate range in terms of costs, although samples
with lower costs should still be favored. Therefore we first dis-
card samples lying in the top 40% of the cost distribution, and
denote the new range of cost as [costmin,costmax]. Next, a vari-
able x = i/nSave, i = 0...nSave− 1 is generated uniformly from
[0,1) and is transformed using a convex function x = f (x) into
[costmin,costmax). We use f (x) = costmin +(costmax− costmin)x6.
The samples that have the closest cost to x are then saved. In Fig-
ure 5, we show the generated samples in blue +, the saved samples
in red X, and the final path as a green solid polyline.

3.2.4 Sample Cost Evaluation

The cost of a sample measures its goodness, similar to an objective
function in optimization frameworks. We use a weighted sum of
four terms shown in Equation 1 as the total cost. Each term will be
explained shortly, and example values of the weights are given in
Table 4.

E = wpEp +wrEr +weEe +wbEb (1)

Pose Control: We favor states that are close to the trajectory. There
are many distance metrics proposed in the literature to measure the
similarity between poses, such as [Kovar et al. 2002]. Here we
simply use a weighted squared distance of internal joint angles and
angular velocities.

Ep =
1
n

n

∑
i=1

wi(dq(qi, q̃i)+0.1∗dv(ωi, ω̃i)) (2)

where dv(ω, ω̃) = ‖ω− ω̃‖2 is the Euclidean distance between two
vectors. dq(q, q̃) = ‖ log(q • q̃−1)‖2 is the distance between two
quaternions, and • represents quaternion multiplication. Quantities
with tilde are desired quantities from the reference trajectory. wi
adjusts the relative importance of different joints. We usually just
use wi = 1, and adjust the weights to produce more motion variants.

Root Control: The root orientation of underactuated systems can-
not be directly controlled by joint torques, but by complex interac-
tions between body parts and the ground. We select samples that
closely follow the orientation of the motion capture trajectory.

Er = dq(qroot , q̃root)+0.1∗dv(ωroot , ω̃root) (3)

End-effector Control: Most motions we experiment with involve
complicated and delicate interactions between the ground and end-
effectors such as hands and feet. Thus the locations of end-effectors
are crucial to the success of a task. Here we consider a term that
monitors the error between the desired height and the current height
of end-effectors, which ensures foot clearance during locomotion
for instance.

Ee =
1
k

k

∑
i=1

ds(piy, p̃iy) (4)

where k is the total number of end-effectors considered. pi is the
position of the ith end-effector, and piy its y component, i.e., the
height of the end-effector. ds(pi, p̃i) is the absolute difference be-
tween two values.

Balance Control: Balance control is normally done by adjusting
the Center of Mass (CoM) with respect to the support polygon.



We use the relative position of the CoM with respect to each end-
effector instead. This has two advantages. First, we do not need
to detect support polygons from noisy captured motions. Second,
even when an end-effector is not in contact with the ground, its rela-
tive position with respect to the CoM still counts. This is important
for the end-effector to prepare a proper landing position. Once the
end-effector has contacted the ground, it is harder to change po-
sition anymore. Denote the height of the character as h, and the
planar vector from end-effector i to CoM as rci = (pCoM−pi)|y=0,
we calculate the balance deviation as follows:

Eb =
1
hk

k

∑
i=1

(dv(rci− r̃ci))+0.1∗dv(vCoM , ṽCoM) (5)

3.3 Trajectory-free Sampling for Idle Motions

Idling is common in video games and background movie charac-
ters. Although they are usually perceived as easy motions, their
quality is surprisingly low compared to more difficult goal-oriented
tasks. Several factors contribute to this phenomenon. One is that
idling is hard to specify procedurally, because there are no clear
goals associated with them, other than a fuzzy feeling that they
should look relaxed and non-repetitive. There are no obvious cri-
teria to constrain idling either. For example, self-collision free is
usually a requirement for goal-oriented tasks, but idling is exactly
the opposite and rich in self-contacts. Capturing idle motions is
not popular either. The relatively low importance of idling usually
does not justify the high costs associated with motion capture and
data processing. Self-contacts and props like chairs also make cap-
ture hard. In the CMU motion capture database, we can only find
one very short trial of idling in a chair, while in contrast there are
dozens of walking motions. Furthermore, the mocap subject sits
idle very cautiously in this trial, and does not look relaxed at all. It
is indeed problematic for a subject to relax and idle, while wearing
a tight suit with 40+ markers on, and being requested to minimize
occlusions between markers or rubbing them with each other. Al-
gorithmic studies on idle motions are also very limited. To the best
of our knowledge, the only study on idling dates back more than a
decade ago, which is a simple application of Perlin noise on canned
poses and actions [Perlin 1995].

We advocate using randomized sampling for idle motions. In a
broader scope, we could sample configurations that look relaxed,
i.e., poses that form multiple self-contacts and contacts with a sup-
porting object, and require low joint torques to maintain. In this
work, we restrict ourselves to a more specific scenario where a user
specifies a set of key poses, from which our algorithm constructs
controllers to drive the character to idle in-between. Unlike con-
trol reconstruction from mocap trajectories, here we only have key
poses but no reference trajectory. The key challenge for such an
algorithm is again the high-dimensionality of the state space. We
develop a control planning algorithm based on RRT [LaValle and
Kuffner 2000], one of the state-of-art path planning methods, with
several crucial modifications:

• In the initialization phase, all the input key poses are simu-
lated with low-gain PD controllers, to generate relaxed poses
which form multiple contacts with the supporting furniture.
The relaxed poses will replace the original poses as input to
RRT.

• During initialization, a start state is directly driven to a target
state by PD servos. DoFs that can reach the target are removed
from RRT to reduce the dimensionality for sampling.

• In the EXTEND operation, control targets are sampled, not
from the whole configuration space but from a hyper tube
around the spherical linear interpolation of the start and goal
states, to limit the sampling space.

• The character is simulated towards a sampled target within
a time frame proportional to the distance between states.
This step implicitly eliminates undesired collisions but retains
valid contacts.

To generate motion variations, we compute multiple trajectories be-
tween each pair of key poses. Then as a postprocess, we manually
select the best trajectories from all sampled controls, and perform
simple algorithmic path simplification and smoothing, similar in
spirit to that of [Yamane et al. 2004], but only to the extent where
control permits. More specifically, because of the dynamic nature
of our planned controllers, there is no guarantee that an edited con-
troller will still work after nodes are removed or smoothed. A con-
troller is tested automatically after every modification, and a failure
to reach the target revokes the operation just performed. At run-
time, we add a small amount of random noise to the controls. This
effectively eliminates zombie-looking fully static poses, and adds
more variations to the synthesized motions. Another option here
is to use Perlin noise, but we find simple random noise works just
fine.

RRT-based path planning has been used for synthesizing manipu-
lation tasks [Yamane et al. 2004]. Their method samples the end-
effector configurations and relies on inverse kinematics to solve for
joint angles. We directly sample from the pose space. Another dif-
ference is that they use RRT in its original kinematic form, while
we perform a kind of dynamic RRT where the controls are sampled
directly. This partly explains the reasonable quality of our simu-
lated motions even without the velocity profile fitting component of
their approach. The lack of stereotypical styles, preferred trajecto-
ries, and bell-shaped velocity profiles in idling is likely the other
factor that makes velocity profile fitting unnecessary in our case.

4 Results

We use the Open Dynamics Engine (ODE) version 0.11 to simu-
late our characters. The simulation time step is 0.0005s and the
coefficient of friction is 0.8. The simulation runs at approximately
real-time rates on an Intel Xeon E5520@2.27GHz desktop.

Control Reconstruction: We have reconstructed controls for var-
ious tasks, some of which are listed in Table 4. To the best of our
knowledge, contact-rich rolling motions have never been consid-
ered by previous automatic control reconstruction methods. Table 4
also shows representative reconstruction times of various trials on
a small cluster of 80 cores, using 1400 samples for each iteration.
The reconstruction is quite robust with respect to noise in input data.
Occasionally we have mocap trials that have knees bending back-
wards severely, or hands flipping around etc. We can still success-
fully reconstruct control for them, but the simulated motions have
these noisy artifacts too, mainly due to the tracking nature of the
reconstruction algorithm.

Although the tasks we have tested are different, we are able to re-
construct controls for all of them using one set of sampling and sim-
ulation parameters, as shown in Table 2 and Table 4. Manual tuning
of these parameters is necessary, but it was not difficult in our expe-
rience. We did not find the results to be highly sensitive to specific
weighting of the terms in the cost function in Equation 1. We can
use the same set of weighting, wp = 8,wr = 5,we = 20,wb = 20
for example, to reconstruct controls for all the motions. Remaining
variations in the given parameters and weights are largely an artifact
of experimentation with progressively more diverse motions, with
the final set of weights typically being backwards compatible with
the original smaller starting set of motions. Although the balance
terms are not necessary for tasks where balance does not play an
important role, a sideways roll for example. Task-specific tuning of



Trial Duration nIter Reconstruction Time wp,wr ,we,wb

walk 5.2 62 143 5, 3, 30, 10
run 2.0 27 51 8, 5, 30, 20

sideways roll 3.0 30 78 8, 5, 0, 0
forward roll 3.0 30 78 8, 5, 0, 20

backward roll 2.1 21 57 8, 5, 0, 20
get-up 3.5 40 93 8, 5, 20, 20
kip-up 6.6 66 184 8, 5, 20, 20

Table 4: Performance statistics: Timing units are in seconds.
nIter correlates with the duration of motion. nSample = 1400 and
nSave = 200. The cluster consists of 10 computational nodes, and
each node consists of two Quad-Xeon (E54xx) processors.

Trial Duration nIter Reconstruction Time wp,wr ,we,wb

walk 5.2 62 193 5,3,30,10
run 2.0 27 80 8,5,30,20

sideways roll 3.0 30 133 8,5,0,0
forward roll 3.0 30 109 8,5,0,20

backward roll 2.1 21 75 8,5,0,20
get-up 3.5 40 140 8,5,20,20
kip-up 4.3 43 165 8,5,20,20

cartwheel roll 2.1 21 50 2,10,0,0

Table 5: Performance statistics on the same compute cluster for the
Asimo-like robot model. Timing units are in seconds. nSample =
2000 and nSave = 500.

the weights is possible if the user wishes to emphasize or deempha-
size particular terms. For instance, the end-effector term is used to
match the height of the feet better for locomotion tasks, but can be
disabled for rolling tasks where the user does not care.

nIter correlates with the duration of motion, the sampling time step,
and the segmentation method used, as described in Section 3.2.3.
When uniform sampling is used, nIter equals the duration of mo-
tion divided by the sampling time step, which is the case for rolling.
For locomotion tasks, semantic segmentation is also used, and that
adds more sampling iterations at contact switching and visually im-
portant instants of the motion. The contact scale parameters in Ta-
ble 2 are never used for rolling. Walking uses an ankle contact scale
1.0; running uses an ankle contact scale 5.0; and the get-up motion
uses a contact scale 3.0 for the shoulders and the elbows, and 5.0
for the wrists.

Even though the reconstruction algorithm is quite robust, there is
no guarantee that every episode of sampling can produce successful
controls, due to its randomness. The successful rate is quite high,
however, for most trials we have experimented. An input motion
with a large feasible region of control, such as the sideways roll,
succeeds almost every time. The most challenging trial is one of
the get-up motions, where the character fails to stand up two thirds
of the time with nSample = 1400 and nSave = 200. The original
mocap trial actually looks like the subject just made it. However,
the failure rate decreases to one fourth if we use nSample = 4000
and nSave = 400.

In the accompanying video, we show that multiple runs of the sam-
pling algorithm produce slightly different controls and simulated
motions. Note that in [Lau et al. 2009], statistical generative mod-
els are learned from multiple trials of the same motion to produce
motion variants for walking, swimming etc. We only need one
example trial, and can produce physically-plausible motions with
rapidly-changing contacts. Furthermore, application of the pro-
posed reconstruction method is not limited to biped models. We
use an animation sequence extracted from a wildlife footage [Lau-
rent et al. 2004], and reconstruct a running controller for a Cheetah
model. Imaginary characters with non-standard morphology should
pose no problem either.

Figure 6: Rolling on hard floor (left) and soft material (right). Note
the difference in contacts and pressure.

Figure 7: Keypose-based control construction. Input poses (top)
and simulated motions (bottom).

Motion Transformation: The inherent robustness of the sampling
approach enables straightforward physically based motion transfor-
mation. Most of the reference mocap moves we use were captured
inside controlled lab environments, and we test the algorithm within
more challenging settings, or environments with altered physical
parameters. For example, we reconstruct a normal walk on a ground
with pebbles of random sizes scattered at random locations. The
feet adapt to the uneven ground naturally. The same motion is also
made to walk on an icy surface with a coefficient of friction 0.1. The
feet slide realistically, with the balance automatically maintained
by the reconstructed controls. In a balance beam walking test, we
manually displace the lower-body trajectory of a mocap walk so
that it walks on a straight line. Then we reconstruct the walk on a
10cm-wide and a 5cm-wide balance beam, and the sampling suc-
ceeds in both cases with correct balancing behaviors added. These
transformed motions are likely difficult to be captured or manually
designed.

Without any difficulty, we can reconstruct the forward rolling with
a ramp of 10 degrees, or a 10cm height raise, or a 50cm height drop
put in front of the character. More adverse conditions, such as a
100cm height drop shown in Figure 1(a), do not necessarily defeat
the reconstruction. But the character plunges too fast and lands on
its back in the synthesized motion, whereas in real life a martial
artist would control the timing of the fall to land on his hands first.
This problem is caused by the tracking nature of our reconstruction.
On the other hand, if simple editing of the reference trajectory is
affordable, we can easily slow down the diving part of the input
data so that the reconstructed control can land the virtual character
on its hands.

Sometimes it is desired to be able to inspect the distribution of con-
tacts and pressure during the course of a motion, for martial arts
education or biomechanical applications such as injury analysis and
product design [Payton and Bartlett 2007]. We can reproduce the
movement of contacts and the change of pressure by simulating
from reconstructed controls, as shown in Figure 6. We further re-



Figure 8: A sideways roll captured from human retargeted to an Asimo-like robot.

Figure 9: An example interaction with the virtual character. The character gets pushed and falls, rolls sideways, gets up, gets pushed again,
rolls backwards, and gets up again.

construct controls for the roll on a springy crash pad, simulated by
setting the error reduction parameter to 0.8 and the constraint force
mixing parameter to 0.007 in ODE. The two snapshots in Figure 6
are taken at the same instant of the roll. As we can see, the rolling
on the soft material lags behind a little, with more contact points
each of less pressure. We speculate that the sampling algorithm
will also be effective in a real deformable body simulator.

Motion Retargeting: Motion retargeting usually refers to the pro-
cess of editing an existing motion for a new kinematic model so
that kinematic constraints and effects are maintained or meaning-
fully adapted. Our control reconstruction process can achieve dy-
namic motion retargeting, where dynamic effects as well as kine-
matic constraints are adapted. We retarget various motions cap-
tured from human subjects to the Asimo-like robot model shown
in Figure 2(b). These retargeting tasks are extremely challenging
because of the huge differences between the human subjects and
the Asimo model, in terms of their kinematic parameters, dynamic
parameters, and collision detection geometries. Nonetheless, the
sampling-based algorithm succeeds in reconstructing controls for
most of the motions, such as the cartwheel shown in Figure 1(b)
and the barrel roll shown in Figure 8. The performance statistics is
given in Table 5.

The root positions of the original mocap data are simply linearly
scaled down for Asimo using the ratio of body heights, so there are
many severe ground penetrations and floating moves in the refer-
ence trajectories. However, we are able to eliminate these in the
synthesized motions, without any kinematic retargeting preprocess,
although the synthesis quality might be degraded because of this.
Compared to reconstructions on the character model, the controls
reconstructed on the Asimo model require larger sampling win-
dows, produce motions of lower quality, and are less accurate in
terms of trajectory tracking. For example, due to wider and boxy
legs, and the lack of a waist joint, Asimo cannot twist its spine or its
legs around each other like humans do, and has to rely on a shoul-
der strategy to roll sideways. The Asimo running is quite sluggish,
mostly because Asimo has bent knees defined for its T-pose, which
causes early touchdown of the feet when the knees extend during
locomotion. We were not able to successfully reconstruct controls
for the backward roll on Asimo. We suspected that it is because
Asimo only has a one-DoF neck joint. We temporarily assigned
three-DoFs to Asimo’s neck, and then are able to produce a suc-
cessful backward roll from the sampled controls.

Idling: We test the trajectory-free control construction with an
idling-in-chair scenario. A few input example poses, such as the top
row of Figure 7, can generate relaxing motions with subtle move-
ments. In the accompanying video, we compare the sit idle mo-
tion synthesized from our algorithm, an artist designed animation
clip, and a motion capture trial. We deem the quality of the syn-
thesized motion comparable, if not better than, the quality of idling
animations from the other two sources. In many cases people have
thought our synthesized idling was motion captured. We encour-
age the readers to watch the accompanying video and evaluate the
quality yourself. In addition, with the constructed controls, we can
easily simulate dynamic effects such as rocking back and forth in a
rocker, shown in the bottom row of Figure 7.

Motion Composition: To support interactive applications such
as video games, we need to compose controls individually con-
structed [Faloutsos et al. 2001]. However, our reconstructed con-
trols are open-loop in nature. That is, for each reference motion m̃,
the reconstructed control produces a simulated trajectory m, called
the canonical trajectory from now on. When starting from a state
not on the canonical trajectory, either as a result of external pertur-
bations or changed environments, the virtual character is unlikely
to follow m to accomplish the planned task. Previous methods for
constructing feedback laws are either task-dependent, or not robust
enough for our target application [Yin et al. 2007; Muico et al.
2009]. Another possibility is to construct dense control policies as
in [Sharon and van de Panne 2005; Sok et al. 2007], yet the memory
requirement of these systems, when applied to many tasks as in our
case, is too high for console games.

We thus use a hybrid approach to transition between controls.
Within every m, we select cut points where other controllers can
transition into. When there is no disturbance, motions are simulated
or transitioned dynamically as planned. Upon external perturba-
tions, the current controller still acts as planned for another 200ms,
to approximate the reaction time in biological systems. Then the
perturbed state, most likely far away from m already, is compared
with all the cut points of all the controllers. If a close cut point ex-
ists, we simply switch to simulate from the matching cut point, and
kinematically blend the end state resulted from the perturbation into
the new canonical trajectory. If no close cut point can be found, a
semi-ragdoll controller takes over, and produces simple reflex-like
behaviors, such as arm extensions, for fall protection. Transitions
can still be made anytime during the ragdoll controller, if a suitable



cut point can be found. An example would be a transition into a
backward roll during the course of a backward fall. In most cases,
however, the character just collapses to the ground, and looks for a
proper get-up controller to transition into. PD control is then used
to drive the character close to the canonical trajectory of the chosen
get-up controller, which will then take over.

Figure 9 is one example interaction with our virtual character. Note
that when the character is acting as planned, we can in theory just
kinematically play back the captured motions, similar to the ap-
proach of [Zordan et al. 2005]. An extra kinematic retargeting pro-
cess is needed, however, to transform all the data captured from
people of different sizes and proportions to the same biped model.
In addition, we choose to always simulate, to avoid the constant
switching back and forth between a kinematic controller and a dy-
namic one.

5 Discussion

We introduce the use of randomized sampling to tackle control
problems for contact-abundant motions such as rolling and idling.
We also present practical design choices and efficient parallel algo-
rithms to realize an interactive, workable algorithm. As with other
high dimensional problems, the specific design choices related to
representation and implementation play a critical role in develop-
ing a working system. The robustness and flexibility of the scheme
are demonstrated through physics-based motion transformation and
retargeting, and on different kinematic and dynamic models.

Scalability: The proposed algorithm scales almost linearly with
respect to the number of available cores. With our 80-core computer
cluster, the current implementation requires approximately 25s of
wall-clock time to reconstruct 1s of motion. With an additional
order of magnitude of increase in the number of cores, an artist can
potentially work with the system at interactive speed. This may be
realized with the help of architectures such as the Amazon Elastic
Computing Cloud, which allow for the dynamic allocation of large
scale computing resources.

Robustness of Reconstruction: Our method is not an optimiza-
tion, so there is no convergence problem. The algorithm returns
within a fixed amount of time, given a set of sampling parameters
and a particular motion. The reconstructed control is not guaranteed
to be successful, however, after a single run of the sampling algo-
rithm. A failure means falling while walking, unable to turn over
while rolling etc. Our experiments show high success rates though.
Roughly speaking, > 80% of the reconstructions finish with a suc-
cess rate of > 80%. Furthermore, because each reconstruction run
requires only minutes, the algorithm can be run multiple times on
the same problem to allow a user to explore different possible re-
constructions. Another option is to increase the number of drawn
samples and saved samples at each iteration.

We have succeeded for all the motions we tried with the human
model. In retrospect, the rich contacts probably help us in some
ways in counteracting drifts and errors. It would be interesting to try
our method on aerial motions where we cannot do anything about
drifts for long durations. In the future, we also wish to add a back-
tracking ability to the sampling algorithm. This would help pre-
clude making decisions that appear to be good in the short term but
turn out to be bad ones later on. In case offsprings of bad samples
have driven away all descendants of good samples during sample
pruning, it would be desirable to rewind to previous iterations and
resample to make up the mistake. This strategy is likely to further
improve the success rate of reconstruction.

Robustness of Control: Our ‘control bases’ are fixed in time,
meaning that control actions are time-dependent but not state-

dependent. Put it another way, the controls we construct are open-
loop. Although this provides a solution to inverse dynamics and
motion transformation for contact-abundant motions, the controls
are not robust with respect to external perturbations or environmen-
tal changes. We can try to search for dense control policies, i.e.,
mappings between states to actions, as in [Sharon and van de Panne
2005; Sok et al. 2007]. But this is likely difficult because of the ex-
istence of a myriad of local minima caused by many fast-changing
contacts. A more promising avenue is to build task-dependent, ac-
tive feedback mechanisms to form close-loop controllers as in [Yin
et al. 2007]. This may or may not be possible for certain types of
tasks.

Generalization: One of the major motivations for physics-
based motion synthesis techniques is to generalize motion cap-
ture data [Zordan and Hodgins 2002; Yin et al. 2003]. We have
demonstrated several forms of motion generalization within the
same framework, and it is interesting to think about how to push
them even further. (a) motion cleanup: Contact-rich motions are
hard to capture and clean up. Some of the input trajectories we
use have serious contact flaws, like ground penetrations and con-
tact sliding. Our method currently can correct penetrations but not
sliding. We can experiment with adding another term into the cost
function to penalize sliding and other artifacts in the input that we
wish to get rid of. (b) motion variation: We focus on small vari-
ations that can be treated as noise, similar to what is modeled in
[Lau et al. 2009]. That is, the same person in the same physical and
mental conditions still cannot reproduce his last motion exactly. For
motion variations caused by other reasons, such as mood changes or
physical injuries, new mechanisms have to be devised. (c) motion
transformation: Because of the tracking nature of the trajectory-
based sampling, our motion transformations cannot deviate too far
away from the input trajectory. To achieve even larger transforma-
tions, we recommend using a controller adaptation scheme, such
as [Yin et al. 2008], on the reconstructed controls rather than hold
on to the reference trajectory all the time. Manual editing of the
input trajectories can also help shape the synthesized motions. (d)
motion retargeting: The Asimo model differs significantly from the
human model, and if the model were to differ more, at some point
the retargeting would simply fail. Continuation methods may be
helpful for more aggressive retargeting.

Smoothness of Motion: In our method, samples are independently
drawn and there is currently no mechanism to control the smooth-
ness of the synthesized motion. This can result in the introduction
of noise into the synthesized motion. It is not problematic for mo-
tions such as rolling because of the changing pattern of collisions,
but can be noticeable for other classes of motions, such as the free-
swinging arms in a balance beam walk. In such cases we propose
using a butterworth filter to post-process the generated motion. An-
other alternative would be to add a smoothness term when evaluat-
ing the sample cost.
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