
1

H-CNN: Spatial Hashing Based CNN for 3D
Shape Analysis

Tianjia Shao,Yin Yang,Yanlin Weng, Qiming Hou, and Kun Zhou, Fellow, IEEE

Abstract—We present a novel spatial hashing based data structure to facilitate 3D shape analysis using convolutional neural networks
(CNNs). Our method builds hierarchical hash tables for an input model under different resolutions that leverage the sparse occupancy
of 3D shape boundary. Based on this data structure, we design two efficient GPU algorithms namely hash2col and col2hash so that
the CNN operations like convolution and pooling can be efficiently parallelized. The perfect spatial hashing is employed as our spatial
hashing scheme, which is not only free of hash collision but also nearly minimal so that our data structure is almost of the same size as
the raw input. Compared with existing 3D CNN methods, our data structure significantly reduces the memory footprint during the CNN
training. As the input geometry features are more compactly packed, CNN operations also run faster with our data structure. The
experiment shows that, under the same network structure, our method yields comparable or better benchmark results compared with
the state-of-the-art while it has only one-third memory consumption when under high resolutions (i.e. 2563).

Index Terms—perfect hashing, convolutional neural network, shape classification, shape retrieval, shape segmentation.

F

1 INTRODUCTION

3D shape analysis such as classification, segmentation, and re-
trieval has long stood as one of the most fundamental tasks for
computer graphics. While many algorithms have been proposed
(e.g. see [1]), they are often crafted for a sub-category of shapes
by manually extracting case-specific features. A general-purpose
shape analysis that handles a wide variety of 3D geometries is still
considered challenging. On the other hand, convolutional neural
networks (CNNs) are capable of learning essential features out
of the raw training data. They have demonstrated great success
in various computer vision problems of 2D images/videos [2]–
[4]. The impressive results from these works drive many follow-
up investigations of leveraging CNNs to tackle more challenging
tasks in 3D shape analysis.

Projecting a 3D model into multiple 2D views is a straight-
forward idea which maximizes the re-usability of existing 2D
CNN frameworks [5]–[8]. If the input 3D model has complex
geometry however, degenerating it to multiple 2D projections
could miss original shape features and lower quality of the final
result. It is known that most useful geometry information only
resides at the surface of a 3D model. While embedded in R3, the
boundary of a 3D model is essentially two-dimensional. Inspired
by this fact, some prior works try to directly extract features out
of the model’s surface [9], [10] using, for instance the Laplace-
Beltrami operator [11]. These methods assume that the model’s
surface be second order differentiable, which may not be the
case in practice. In fact, many scanned or man-made 3D models
are of multiple components, which are not even manifold with
the presence of a large number of holes, dangling vertices and
intersecting/interpenetrating polygons. Using dense voxel-based

• T. Shao, Y. Weng, Q. Hou, and K. Zhou are with the State Key Lab of
CAD&CG, Zhejiang University, Hangzhou 310058, China.
E-mail: tianjiashao@gmail.com, kunzhou@acm.org

• Y. Yang is with Department of Electrical and Computer Engineering,
University of New Mexico, NM, 87131.
E-mail: yangy@unm.edu

discretization is another alternative [12], [13]. Unfortunately, treat-
ing a 3D model as a voxelized volume does not scale up as both
memory usage and computational costs increase cubically with the
escalated voxel resolution. The input data would easily exceed the
GPU memory limit under moderate resolutions.

Octree-based model discretization significantly relieves the
memory burden for 3D shape analysis [14], [15]. For instance,
Wang et al. [15] proposed a framework named O-CNN (ab-
breviated as OCNN in this paper), which utilizes the octree to
discretize the surface of a 3D shape. In octree-based methods,
whether or not an octant is generated depends on whether or not its
parent octant intersects with the input model. As a result, although
octree effectively reduces the memory footprint compared to the
“brute-force” voxelization scheme, its memory overhead is still
considerable since many redundant empty leaf octants are also
generated, especially for high-resolution models.

In this paper, we provide a better answer to the question of
how to wisely exploit the sparse occupancy of 3D models and
structure them in a way that conveniently interfaces with various
CNN architectures, as shown in Figure 1. In our framework, 3D
shapes are packed using the perfect spatial hashing (PSH) [16]
and we name our framework as Hash-CNN or HCNN. PSH is
nearly minimal meaning the size of the hash table is almost the
same as the size of the input 3D model. As later discussed in
§ 6.3, our memory overhead is tightly bounded by O(N

4
3) in the

worst case while OCNN has a memory overhead of O(N2), not
to mention other O(N3) voxel-based 3D CNNs (here, N denotes
the voxel resolution at the finest level). Our primary contribution
is investigating how to efficiently parallelize CNN operations
with hash-based models. To this end, two GPU algorithms name-
ly hash2col and col2hash are designed to facilitate CNN
operations like convolution and pooling. Our experiments show
that HCNN achieves comparable benchmark scores in various
shape analysis tasks compared with existing 3D CNN methods.
However, HCNN consumes much less memory and it also runs
faster due to its compact data packing.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

…

Input model

Multi-level PSH CNN training

42/23 35/19
23/13

Segmentation result

32 128 512

Fig. 1. An overview of HCNN framework for shape analysis. We construct a set of hierarchical PSHs to pack surface geometric features of an input
airplane model at different resolution levels. Compared with existing 3D CNN frameworks, our method fully utilizes the spatial sparsity of 3D models,
and the PSH data structure is almost of the same size as the raw input. Therefore, we can perform high-resolution shape analysis with 3D CNN
efficiently. The final segmentation results demonstrate a clear advantage of high-resolution models. Each part of the airplane model is much better
segmented at the resolution of 5123, which is currently only possible with HCNN.

2 RELATED WORK

3D shape analysis [1], [17], [18] is one of the most fundamental
tasks in computer graphics. Most existing works utilize manually
crafted features for dedicated tasks such as shape retrieval and
segmentation. Encouraged by great successes in 2D images analy-
sis using CNN-based machine learning methods [19]–[21], many
research efforts have been devoted to leverage CNN techniques
for 3D shape analysis.

A straightforward idea is to feed multiple projections of a 3D
model as the CNN input [5]–[8] so that the existing CNN architec-
tures for 2D images can be re-used. SnapNet [22] further performs
semantic labeling on 3D point clouds by back-projecting the 2D
label predictions. However, self-occlusion is almost inevitable for
complicated shapes during the projection, and the problem of how
to faithfully restore complete 3D information out of 2D projections
remains an unknown one to us.

Another direction is to perform CNN operations over the ge-
ometric features defined on 3D model surfaces [23]. For instance,
Boscaini et al. [10] used windowed Fourier transform and Masci et
al. [9] used local geodesic polar coordinates to extract local shape
descriptors for the CNN training. These methods, however require
that input models should be smooth manifold, and therefore cannot
be directly used for 3D models composed of point clouds or
polygon soups. Alternatively, Sinha et al. [24] parameterized a
3D shape over a spherical domain and re-represented the input
model using a geometry image [25], based on which the CNN
training was carried out. Guo et al. [26] computed a collection of
shape features and re-shaped them into a matrix as the network
input, while Maron et al. [27] applied CNN to sphere-type shapes
using a global parametrization to a planar flat-torus.

Non-CNN-based deep neural networks can also be applied to
3D point clouds. Qi et al. [28] proposed PointNet to analyze 3D
point clouds. This method uses shared multi-layer perceptron and
max pooling for the feature extraction. A follow-up research called
PointNet++ [29] improves the original PointNet by incorporating
neighborhood information in the point cloud. PCPNet [30] is a
multi-scale variant of the PointNet architecture with emphasis on
local shape information. Kd-Net [31] partitions the raw point cloud
into a Kd-tree structure and constructs a network based on the Kd-
tree hierarchy. These methods are all memory efficient since they
take the raw point cloud as the network input, and they can obtain

good benchmark scores. However, because input point clouds are
not in a regular format, it is still unclear how to apply convolution
operations in these methods.

Similar to considering images as an array of 2D pixels,
discretizing 3D models into voxels is a natural way to organize the
shape information for CNN-based shape analysis. Wu et al. [12]
proposed 3D ShapeNets for 3D object detection. They represented
a 3D shape as a probability distribution of binary variables on
voxels. Maturana and Scherer [13] used similar strategy to encode
large point cloud datasets. They used a binary occupancy grid to
distinguish free and occupied spaces, a density grid to estimate
the probability that the voxel would block a sensor beam, and a
hit grid to record the hit numbers. Such volumetric discretization
consumes memory cubically w.r.t. the voxel resolution, thus is
not feasible for high-resolution shape analysis. Observing the fact
that the spatial occupancy of 3D data is often sparse, Wang et
al. [32] designed a feature-centric voting algorithm named Vote3D
for fast recognition of cars, pedestrians and bicyclists from the
KITTI database [33] using the sliding window method. More
importantly, they demonstrated mathematical equivalence between
the sparse convolution and voting. Based on this, Engelcke et
al. [34] proposed a method called Vote3Deep converting the
convolution into voting procedures, which can be simply applied
to the non-empty voxels. However, with more convolution layers
added to the CNN, this method quickly becomes prohibitive.

Octree-based data structures have been proven an effective
way to reduce the memory consumption of 3D shapes. For
example, Riegler et al. [14] proposed a hybrid grid-octree data
structure to support high-resolution 3D CNNs. Our work is most
relevant to OCNN [15], which used an octree to store the surface
features of a 3D model and reduced the memory consumption
for 3D CNNs to O(N2). For the octree data structure, an octant
is subdivided into eight children octants if it intersects with the
model’s surface regardless if all of those eight children octants
are on the model. Therefore, an OCNN’s subdivision also yields
O(N2) futile octants that do not contain useful features of the
model. On the other hand, we use multi-level PSH [16] to organize
voxelized 3D models. PSH is nearly minimal while retaining an as
cache-friendly as possible random access. As a result, the memory
footprint of HCNN is close to the theoretic lower bound. Unlike
in the original PSH work [16], the main hash table only stores the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

`

Fig. 2. Accessing the receptive field between different resolutions based
on PSH. Here, li and lo denote the input and output resolution levels.
For each output hash slot in Hlo , we obtain its voxel position in the
volume from the position tag (the red arrow). The input receptive field at
resolution level li for the voxel can be located based on the kernel size,
stride and padding (the black arrow). For each voxel within the receptive
field, we access its hash slot using the PSH hashing function (the yellow
arrows) so that its corresponding feature values in the data array can be
retrieved.

data index, and the real feature data is compactly assembled in a
separate data array. We investigate how to seamlessly synergize
hierarchical PSH-based models with CNN operations so that they
can be efficiently executed on the GPU. In the concurrent work by
Graham et al. [35], the similar idea of exploiting the data sparsity
is also realized via efficient convolution schemes named sparse
convolution (SC) and submanifold sparse convolution (SSC). The
SC operation is similar to the one used in [36], which avoids
applying convolution operations on empty voxels. SSC imposes
extra restrictions when the stride size is one. Concretely, SSC zero
pads the voxel grid to make sure that the convolution output has
the same resolution as the input, and SSC does not perform the
convolution unless the center of the receptive field on the input
grid is non-empty. Doing so prevents the convolution dilation
artifact and preserves the data sparsity. However, the performance
of SC/SSC highly relies on the employed hashing function, and
general-purpose hashing functions may not yield an optimal per-
formance for CNN operations. HCNN is orthogonal to SSC by
incorporating the PSH into the 3D CNN architecture for high-
resolution 3D shape analysis, which is both memory efficient and
collision free. In addition, HCNN does not need to build rule books
to establish the correspondence between the input and output of a
convolution or pooling operation, which on the other hand, must
be created on the fly in SSC.

3 ALGORITHM OVERVIEW

Coupling CNN architectures with spatial hashing is challenging.
Many CNN operations like convolution and pooling alter the
spatial arrangement of the 3D model’s geometry features, which
require our hash-based data structure being able to freely exchange
information between different resolutions. Unlike the child-parent
linkage in tree-based data structures however, a spatial hashing
does not possess such built-in hierarchical connections. Further-
more, we also need to bear in mind while designing our data

structure that CNN training is typically performed over a group of
3D models, i.e. a mini-batch, and we need to efficiently fetch
the correspondences of features under different resolutions for
all the models in the group. Finally, we would like to make
CNN operations GPU-friendly so they can be parallelized and
accelerated with modern GPU architectures.

To achieve these objectives, on the top of the regular PSH data
structure (§ 4.1), we design an auxiliary data structure named mod-
el index table, which instantly returns the model’s index within a
mini-batch for a given hash query. The corresponding geometry
data can then be efficiently accessed with accumulated index tables
(§ 4.2). As we only use simple modulo functions for the spatial
hashing [16], we can efficiently locate the corresponding data at
a different resolution using constant indirections. All the known
CNN operations such as convolution can then be parallelized with
our data structure by assigning a CUDA thread to collect necessary
feature values within the receptive field for each output hash slot
per channel as illustrated in Figure 2 (§ 5).

4 SPATIAL HASHING FOR 3D CNN

For a given input 3D shape, either a triangle soup/mesh or a point
cloud, we first uniformly scale it to fit a unit sphere pivoted at the
model’s geometry center. Then, an axis-aligned bounding cube is
built, whose dimension equals to the sphere’s diameter. Doing so
ensures that the model remains inside the bounding box under
arbitrary rotations, so that we can further apply the training data
augmentation during the training (see e.g. §6.4). This bounding
cube is subdivided into grid cells or voxels along x, y, and z
axes. A voxel is a small equilateral cuboid. It is considered non-
empty when it encapsulates a small patch of the model’s boundary
surface. As suggested in [15], we put extra sample points on this
embedded surface patch, and the averaged normal of all the sample
points is fed to the CNN as the input signal. For an empty voxel,
its input is simply a zero vector.

4.1 Multi-level PSH

The core data structure of PSH includes a hash table and an
offset table. The size of hash table is almost the same as the
number of non-empty voxels, and the offset table is typically
much smaller than the hash table. By applying two simple modulo
functions separately on the two tables, we obtain a perfect hashing
mapping for all non-empty voxels. We call a hashing scheme
perfect meaning all the legal hash queries are collision free. Such
simple implementation helps greatly reduce the memory usage.
Based on the core PSH data structure, we build a set of hierarchical
PSHs. At each level of the hierarchy, we construct a data array D,
a hash table H, an offset table Φ and a position tag T . The data
array at the finest level stores the input feature (i.e. the normal
direction of the voxel).

Let U be a d-dimensional discrete spatial domain with u = ūd

voxels, out of which the sparse geometry data S occupies n grid
cells (i.e. n = |S|). In other words, U represents all the voxels
within the bounding cube at the given resolution, and S represents
the set of voxels intersecting with the input model. We seek for a
hash table H, which is a d-dimensional array of size m = m̄d ≥ n
and a d-dimensional offset table Φ of size r = r̄d . By building
maps h0 : U→ H and h1 : U→ Φ, such that h0(p) = p mod m̄
and h1(p) = p mod r̄, one can obtain the perfect hash function

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

0 1 2

3 4 5

6 -1 7

* * * * * * * *

(2,1)(2,2)(2,3)

(3,1)(3,3)(4,1)

(4,2) (4,3)

ℎ

ℎ

+ ℎ

H T D

0 1 2 3 4

0

1

2

3

4

5

6

0 1 2 0 1 2

0

1

2

0

1

2

0 1

0

1

0 1 2 3 4 5 6 7

Φ

(0,1)

(1,2)

Fig. 3. An illustrative 2D example of the constitution of our PSH. The
domain U consists of 7× 5 2D voxels or pixels. The red-shaded pixels
stand for the input model. The green, blue, yellow and brown tables are
the offset table (Φ), hash table (H), position tag (T) and data array (D)
respectively.

mapping each non-empty voxel on the 3D shape p ∈ S to a unique
slot s = h(p) in the hash table as:

h(p) = h0(p)+Φ[h1(p)] mod m̄. (1)

The hash table H possesses slightly excessive slots (i.e. m = m̄d ≥
n) to make sure that the hashing representation of S is collision
free. A NULL value is stored at those redundant slots in H. Clearly,
these NULL values should not participate in the CNN operations
like batch normalization and scale. To this end, we assemble all
the data for S into a compact d-dimensional array D of size n. H
only houses the data index in D. If a slot in H is redundant, it is
indexed as −1 so that the associated data query is skipped.

Empty voxels (i.e. when p ∈ U\S) may also be visited during
CNN operations like convolution and pooling. Because PSH is
only perfect for queries of voxels in S, plugging these empty
voxels’ indices into Eq. (1) is likely to return incorrect values that
actually correspond to other non-empty grid cells. To avoid this
mismatch, we adopt the strategy used in [16] adding an additional
position tag table T , which has the same size of H. T [i] stores
the voxel index for the corresponding slot at H[i]. Therefore when
a grid cell p is queried, we first check its data index in H or
H[h(p)]. If it returns a valid index other than -1, we further check
the position tag T [h(p)] to make sure T [h(p)] = p. Otherwise,
p ∈U\S is an off-model voxel and the associated CNN operation
should be skipped. In our implementation, we use a 16-bit position
tag for each x, y and z index, which supports the voxelization
resolution up to 65,5363.

Figure 3 gives an illustrative 2D toy example. The domain U

is a 7×5 2D pixel grid. The red-shaded pixels stand for the input
model, thus n = |S|= 8. We have a 3×3 hash table H (i.e. m̄ = 3
and it is the blue table in the figure) and a 2× 2 offset table (i.e.
r̄ = 2 and it is the green table in the figure). Assume that the
pixel p(3,1) is queried and h0 yields h0(3,1) = (3 mod m̄,1 mod
m̄) = (0,1). h1(3,1) = (3 mod r̄,1 mod r̄) = (1,1) gives the 2D
index in the offset table. Φ(1,1) = (1,2), which is added to h0(p)
to compute the final index in H: Φ(1,1) + h0(p) = (1+ 0 mod
m̄,2+1 mod m̄) = (1,0). Before we access the corresponding data
cell in D (the fourth cell in this example because H(1,0) = 3), the
position tag table (the yellow table) is queried. Since T (1,0) =
(3,1), which equals to the original pixel index of p, we know that
p ∈ S is indeed on the input model. Note that in this example,
H(2,1) is a redundant slot (colored in dark blue in Figure 3).
Therefore, the corresponding index is -1.

4.2 Mini-batch with PSH
During the CNN training, it is typical that the network parameters
are optimized over a subset of the training data, referred to
as a mini-batch. Let b be the batch size and l be the reso-
lution level. In order to facilitate per-batch CNN training, we
build a “super-PSH” by attaching H, Φ, T for all the models
in a batch: H∗l =

{
H1

l ,H
2
l , ...,H

b
l

}
, Φ∗l =

{
Φ1

l ,Φ
2
l , ...,Φ

b
l

}
, and

T ∗l =
{

T 1
l ,T

2
l , ...,T

b
l

}
as illustrated in Figure 4. That is we expand

each of these d-dimensional tables into a 1D array and concatenate
them together. The data array D∗l of the batch is shaped as a row-
major cl by ∑

b
i=1 |Si

l | matrix, where cl is the number of channels
at level l, and ∑

b
i=1 |Si

l | is the total number of non-empty voxels of
all the models in the batch. A column of D∗l is a cl-vector, and it
stores the features of the corresponding voxel. The dimensionality
of H i

l , Φi
l , and Di

l is also packed as m̄∗l =
{

m̄1
l , m̄

2
l , ..., m̄

b
l

}
,

r̄∗l =
{

r̄1
l , r̄

2
l , ..., r̄

b
l

}
, and n∗l =

{
n1

l ,n
2
l , ...,n

b
l

}
.

In addition, we also record accumulated indices for H, Φ and
D as: M∗l =

{
0,M1

l ,M
2
l , ...,M

b
l

}
, R∗l =

{
0,R1

l ,R
2
l , ...,R

b
l

}
and N∗l ={

0,N1
l ,N

2
l , ...,N

b
l

}
where

Mi
l =

i

∑
k=1

(m̄k
l)

d =
i

∑
k=1

mk
l , Ri

l =
i

∑
k=1

(r̄k
l)

d =
i

∑
k=1

rk
l , Ni

l =
i

∑
k=1

nk
l .

Indeed, M∗l , R∗l and N∗l store the super table (i.e. H∗l , Φ∗l , T ∗l ,
and D∗l) offsets of the k-th model in the batch. For instance, the
segment of H∗l starting from H∗l

[
M∗l [k− 1]

]
to H∗l

[
M∗l [k]− 1

]
corresponds to the hash table Hk

l ; the segment from Φ∗l
[
R∗l [k−1]

]
to Φ∗l

[
R∗l [k]− 1

]
corresponds to the offset table Φk

l ; the segment
from T ∗l

[
M∗l [k−1]

]
to T ∗l

[
M∗l [k]−1

]
corresponds to the position

tag T k
l ; and the segment from D∗l

[
N∗l [k− 1]

]
to D∗l

[
N∗l [k]− 1

]
is the data array Dk

l . Lastly, we build a model index table
V ∗l =

{
V 1

l ,V
2
l , ...,V

b
l

}
for the inverse query. Here, V i

l has the same
size as H i

l does, and each of its slots stores the model’s index in a
batch: V i

l (·) = i.

5 CNN OPERATIONS WITH MULTI-LEVEL PSH
In this section we show how to apply CNN operations like convo-
lution/transposed convolution, pooling/unpooling, batch normal-
ization and scale to the PSH-based data structure so that they can
be efficiently executed on the GPU.

Convolution The convolution operator Ψc in the unrolled form
is:

Ψc(p) = ∑
n

∑
i

∑
j
∑
k

W (n)
i jk ·F

(n)(pi jk), (2)

where pi jk is a neighboring voxel of voxel p ∈ S. F(n) and W (n)
i jk

are the feature vector and the kernel weight of the n-th channel.
This nested summation can be reshaped as a matrix product [37]
and computed efficiently on the GPU:

Do = W · D̃i. (3)

Let li and lo denote the input and output hierarchy levels of the
convolution. Do is essentially the matrix representation of the
output data array D∗lo . Each column of Do is the feature signal
of an output voxel. A row vector in W concatenates vectorized
kernel weights for all the input channels, and the number of rows
in W equals to the number of convolution kernels employed. We
design a subroutine hash2col to assist the assembly of matrix
D̃i, which fetches feature values out of the input data array D∗li
so that a column of D̃i stacks feature signals within the receptive
fields covered by kernels.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

0 1 2
3 4 5
6 -1 7

a b c

d e

f g h

i

j

k l m n

o

0 1 2
3 -1 4
-1 5 6

0 1 2 3 4 5 6 -1 7 0 1 2 3 -1 4 -1 5 6

a b c d e f g h i j k l m n o∗

∗

(2,1) (2,2) (2,3) (3,1) (3,3) (4,1) (4,2) (4,3) (1,2) (2,2) (3,1) (3,2) (3,3) (3,4) (4,2)

Φ∗

Φ Φ

∗

∗ = {0, 9, 18}

∗ = {0, 4, 8} ∗ = {0, 8, 15}

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2∗

= 2

A mini-batch with two models 0 9 18

0 4 8

0 9 18

0 9 18

0 8 15

Fig. 4. PSH data structures for a mini-batch of two models. All the feature data for the red-shaded pixels are stored in the super data array D∗,
which consists of the data arrays of each individual models. Super hash table H∗, position tag T ∗ and model index table V ∗ are of the same size.
For a give hash slot indexed at iH∗ , one can instantly know that this voxel, if not empty, is on the V ∗[iH∗]-th model in the batch by checking the
model index table V ∗. This information bridges the data sets from different hierarchy levels. With the auxiliary accumulated index tables R∗, M∗, and
N∗, we can directly pinpoint the data using local index offset by R∗[V ∗[iH∗]−1], M∗[V ∗[iH∗]−1] and N∗[V ∗[iH∗]−1] respectively. For instance in this
simple example, when the local hash index is computed using Eq. (1) for a non-empty voxel on the second model, its hash index in H∗ can then be
obtained by offsetting the local hash index by M∗[2−1] = 9.

Input: b, cli , D∗li , H∗li , M∗li , R∗li , N∗li V ∗lo , T ∗lo , H∗lo , M∗lo , N∗lo , F , Ss, Sp

Output: D̃i

1: launch cli ·M∗lo [b] threads;
/* parallel for loop and ithrd is the thread index */

2: for ithrd = 0 : cli ·M∗lo [b]−1 do
3: ic←

⌊
ithrd/M∗lo [b]

⌋
; // ic is the channel index

4: iH∗lo ← ithrd − ic ·M∗lo [b];
5: v←V ∗lo [iH∗lo]; // v is the model index in the mini-batch

6: col← N∗lo
[
v−1

]
+H∗lo [iH∗lo]; // col is the column index

7: if H∗lo [iH∗lo] =−1 then
8: return ; // iH∗lo points to an empty hash slot

9: end
10: else
11: plo ← T ∗lo [iH∗lo]; // plo is the voxel position

12: Rli ← /0; // Rli is the receptive field on Uli
/* Ss and Sp are stride and padding sizes */

13: if Ss = 1 then
14: Rli ← Uli [plo − (F−1)/2, plo +(F−1)/2]3;
15: end
16: else
17: Rli ← Uli [plo ·Ss−Sp, plo ·Ss−Sp +F−1]3;
18: end
19: row← 0; // row is current row index in D̃i

/* iterate all the voxels within the kernel */
20: for pli ∈ Rli do
21: iΦ∗li

← R∗li [v−1]+h1(pli);
22: iH∗li

←M∗li [v−1]+
(
h0(pli)+Φ∗li [iΦ∗li

] mod m̄li

)
;

23: if H∗li [iH∗li
] 6=−1 and pli = T ∗li [iH∗li

] then
24: iD∗li

← N∗li [v−1]+H∗li [iH∗li
];

25: D̃i[ic ·F + row,col]← D∗li [ic, iD∗li
];

26: end
27: else
28: D̃i[ic ·F + row,col]← 0;
29: end

/* assume pli is iterated according to its
spatial arrangement in Rli */

30: row← row+1;
31: end
32: end
33: end

Algorithm 1: hash2col subroutine

The algorithmic procedure for hash2col is detailed in Al-
gorithm 1. In practice, we launch cli ·M∗lo [b] CUDA threads in
total, where cli is the number of input channels. Recall that M∗lo [b]
is the last entry of the accumulated index array M∗lo such that
M∗lo [b] = Mb

lo , and it gives the total number of hash slots on H∗lo .
Hence, our parallelization scheme can be understood as assigning
a thread to collect necessary feature values within the receptive
field for each output hash slot per channel. The basic idea is to find
the receptive field Rli ⊂Uli that corresponds to an output voxel plo
and retrieve features for D̃i. A practical challenge lies in the fact
that output and input data arrays may reside on the voxel grids
of different hierarchy levels. In [35], this task is accomplished by
creating the rule book before a convolution is practically applied,
which requires extra temporary memory and slows the operation
(due to the pre-iteration). On the other hand, HCNN resorts to
the PSH mapping (Eq. (1)) and the position tag table to build the
necessary output-input correspondence.

Given a thread index ithrd (0 ≤ ithrd ≤ cli ·M∗lo [b]− 1), we
compute its associated channel index ic as ic =

⌊
ithrd/M∗lo [b]

⌋
.

Its super hash index iH∗lo (i.e. the index in H∗lo) is simply
iH∗lo = ithrd − ic ·M∗lo [b], so that we know that this thread is for the
V ∗lo [iH∗lo]-th model in the batch (recall that V ∗lo is the model index
table). If H∗lo [iH∗lo] 6=−1 meaning this thread corresponds to a valid
non-empty voxel, the index of the column in Do that houses the
corresponding output feature is N∗lo

[
V ∗lo [iH∗lo]−1

]
+H∗lo [iH∗lo].

With the help of the position tag table T ∗lo , the index of the
output voxel in Ulo associated with the thread ithrd can be retrieved
by plo = T ∗lo [iH∗lo], based on which we can obtain the input voxel
positions within the receptive field and construct the corresponding
column in D̃i. Specifically, if the stride size is one, indicating
the voxel resolution is unchanged after the convolution or li = lo,
the input model has the same hash structure as the output. In
this case, the receptive field associated with plo spans from plo −
(F−1)/2 to plo +(F−1)/2 along each dimension on Uli denoted
as Uli [plo − (F − 1)/2, plo + (F − 1)/2]d . Here, F is the kernel
size. On the other hand, if the stride size is larger than one, the
convolution will down-sample the input feature, and the receptive

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Input: b, cli , δ D̃i, H∗li , M∗li , R∗li , N∗li V ∗lo , T ∗lo , H∗lo , M∗lo , N∗lo , F , Ss, Sp
Output: δD∗li

1: δD∗li [:]← 0; // δD∗li is initialized as 0

2: launch cli ·M∗lo [b] threads;
/* parallel for loop and ithrd is the thread index */

3: for ithrd = 0 : cli ·M∗lo [b]−1 do
4: ic←

⌊
ithrd/M∗lo [b]

⌋
; // ic is the channel index

5: iH∗lo ← ithrd − ic ·M∗lo [b];
6: v←V ∗lo [iH∗lo]; // v is the model index in the mini-batch

7: col← N∗lo
[
v−1

]
+H∗lo [iH∗lo]; // col is the column index

8: if H∗lo [iH∗lo] =−1 then
9: return ; // iH∗lo points to an empty hash slot

10: end
11: else
12: plo ← T ∗lo [iH∗lo]; // plo is the voxel position

13: Rli ← /0; // Rli is the receptive field on Uli
/* Ss and Sp are stride and padding sizes */

14: if Ss = 1 then
15: Rli ← Uli [plo − (F−1)/2, plo +(F−1)/2]3;
16: end
17: else
18: Rli ← Uli [plo ·Ss−Sp, plo ·Ss−Sp +F−1]3;
19: end
20: row← 0; // row is current row index in δ D̃i

/* iterate all the voxels within the kernel */
21: for pli ∈ Rli do
22: iΦ∗li

← R∗li [v−1]+h1(pli);
23: iH∗li

←M∗li [v−1]+h0(pli)+
(
Φ∗li [iΦ∗li

] mod m̄li

)
;

24: if H∗li [iH∗li
] 6=−1 and pli = T ∗li [iH∗li

] then
25: iD∗li

← N∗li [v−1]+H∗li [iH∗li
];

26: δD∗li [ic, iD∗li
]← δD∗li [ic, iD∗li

]+δ D̃i[ic ·F + row,col];
27: end
28: row← row+1;
29: end
30: end
31: end

Algorithm 2: col2hash subroutine

field on Uli is Uli [plo ·Ss−Sp, plo ·Ss−Sp +F−1]d with the stride
size Ss and the padding size Sp. For irregular kernels [38], [39],
we can similarly obtain the corresponding receptive field on Uli
based on plo .

As mentioned, for a non-empty voxel pli ∈ Uli within the
receptive field of a given output voxel plo ∈ Ulo , we know that
it belongs to the v-th model of the batch, where v = V ∗lo [iH∗lo].
Therefore, its offset index in Φ∗li can be computed as:

iΦ∗li
= R∗li [v−1]+h1(pli), (4)

where R∗li is the accumulated offset index array at level li, and
R∗li [v− 1] returns the starting index of the offset table Φv

li
in the

super table Φ∗li . h1(pli) computes the (local) offset index. Thus,
the offset value of pli can be queried by Φ∗li [iΦ∗li

]. The index of pli
in the super hash table H∗li can be computed similarly as:

iH∗li
= M∗li [v−1]+

(
h0(pli)+Φ∗li [iΦ∗li

] mod m̄li

)
= M∗li [v−1]+

(
h0(pli)+Φ∗li [R

∗
li [v−1]+h1(pli)] mod m̄li

)
.
(5)

Here, h0(pli) and h1(pli) are maps defined on hierarchy level li. If
H∗li [iH∗li

] 6=−1 and the position tag is also consistent (i.e. T ∗li [iH∗li
] =

pli), we fetch the feature from the data array by D∗li [iD∗li
], where

iD∗li
= N∗li [v−1]+H∗li [iH∗li

]. (6)

Otherwise, a zero value is returned.

Back propagation & weight update During the CNN training
and optimization, the numerical gradient of kernels’ weights is
computed as:

δW = δDo · D̃>i , (7)

where δDo is the variation of the output data array Do. In order to
apply Eq. (7) in previous CNN layers, we also calculate how the
variational error is propagated back:

δ D̃i = W> ·δDo. (8)

Clearly, we need to re-pack the errors in δ D̃i in accordance with
the format of the data array D∗li so that the resulting matrix δDi
can be sent to the previous CNN layer. This process is handled by
the col2hash subroutine, outlined in Algorithm 2. As the name
implies, col2hash is quite similar to hash2col except at line
26, where variational errors from the receptive field is lumped into
a single accumulated error.

Pooling, unpooling & transposed convolution The pooling
layer condenses the spatial size of the input features by using a
single representative activation for a receptive field. This operation
can be regarded as a special type of convolution with a stride
size Ss > 1. Therefore, hash2col subroutine can also assist the
pooling operation. The average-pooling is dealt with as applying
a convolution kernel with all the weights equal to 1/F3. For
the max-pooling, instead of performing a stretched inner product
across the receptive field, we output the maximum signal after
the traversal of the receptive field (the for loop at line 20 in
Algorithm 1). Unlike OCNN [15], our framework supports any
stride sizes for the pooling since the PSH can be generated on the
grid of an arbitrary resolution.

The unpooling operation aims to partially revert the input acti-
vation after the pooling, which could be useful for understanding
the CNN features [40], [41] or restoring the spatial structure of the
input activations for segmentation [42], flow estimation [43], and
generative modeling [42]. During the max-pooling, we record the
index of the maximum activation for each receptive field (known
as the switch). When performing the max-unpooling, the entire
receptive field corresponding to an input voxel is initialized to
be zero, and the feature signal is restored only at the recorded
voxel index. The average-unpooling is similarly handled, where
we evenly distribute the input activation over its receptive field.

Transposed convolution is also referred to as deconvolution,
upconvolution or fractionally strided convolution [44], which has
been proven useful for enhancing the activation map [40], [45].
Mathematically, the transposed convolution is equivalent to the
regular convolution and can be dealt with using hash2col
subroutine. However, doing so involves excessive zero padding
and thus degenerates network’s performance. In fact, the deconvo-
lution flips the input and output of the forward convolution using
a transposed kernel as: D̃o = W> ·Di, which is exactly how we
handle the error back propagation (i.e. Eq. (8)). Therefore, the
col2hash subroutine can be directly used for deconvolution
operations.

Other CNN operations Because all the feature values in HCNN
are compactly stored in the data array D∗, operations that are
directly applied to the feature values like batch normalization [46]
and scale can be trivially parallelized on GPUs.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

6 EXPERIMENTAL RESULTS

Our framework was implemented on a desktop computer equipped
with an Intel I7-6950X CPU (3.0 GHz) and an nVidia
GeForce 1080 Pascal GPU with 8 GB DDR5 memory. We
used Caffe framework [47] for the CNN implementation. The
3D models used are from ModeNet40 [12] and ShapeNet
Core55 [48]. Both are publicly available. The source code of
HCNN can be found in the accompanying supplementary file. The
executable and some of the training data in PSH format (4.4 GB
in total) can also be downloaded via the anonymous Google
Drive link, which can also be found in the supplementary file.
We encourage readers to test HCNN by themselves.

Model rectification It has been noticed that normal information
on 3D models from the ModeNet database are often incorrect or
missing. We fix the normal information by casting rays from 14
virtual cameras (at six faces and eight corners of the bounding
cube). Some 3D models use a degenerated 2D plane to represent
a thin shape. For instance, the back of a chair model may only
consist of two flat triangles. To restore the volumetric information
of such thin geometries, we displace the sample points on the
model towards its normal direction by 1/(2 · ūmax), where ūmax
denotes the voxel resolution at the finest hierarchy level. In other
words, the model’s surface is slightly dilated by a half-voxel size.

6.1 Network Architecture
A carefully fine-tuned network architecture could significantly im-
prove the CNN result and relieve the training efforts. Nevertheless,
this is neither the primary motivation nor the contribution of this
work. In order to report an apple-to-apple comparison with peers
and benchmark our method objectively, we employ a network
similar to the well-known LeNet [49].

In our framework, the convolution and pooling operations are
repeated from the finest level, and ReLU is used as the activation
function. A batch normalization (BN) is also applied [46]. Our
PSH hierarchy allows very dense voxelization at the resolution of
5123 (i.e. see Figure 5), where the hierarchy level l = 9. Each
coarser level reduces the resolution by half, and the coarsest
level has the resolution of 43, where l = 2. Such multi-level PSH
configuration exactly matches the OCNN hierarchy, which allows
us to better evaluate the performance between these two data
structures. At each level, we have the same operation sequence
as: Convolution→ BN→ ReLU → Pooling. The receptive field of
kernels is 3×3×3, and the number of channels at the l-th level is
set as max{2,29−l}.

Three classic shape analysis tasks namely shape classification,
retrieval, and segmentation are benchmarked. For the classifica-
tion, two fully connected (FC) layers, a softmax layer and two
dropout layers [50], [51] ordered as: Dropout → FC(128) →
Dropout → FC(Nc)→ So f tmax→ Out put are appended. Here,
FC(K) indicates K neurons are set at the FC layer. For the
shape retrieval, we use the output from the object classification
as the key to search for the most similar shapes to the query.
For the segmentation, we follow the DeconvNet [42] structure,
which adds a deconvolution network after a convolution net-
work for dense predictions. The deconvolution network simply
reverses the convolution procedure where the convolution and
pooling operators are replaced by the deconvolution and unpooling
operators. Specifically, at each level we apply Unpooling →
Deconvolution→ BN → ReLU and then move to the next finer
level.

323 643 1283

2563 5123

Fig. 5. The benefit of dense voxelization is obvious. The discretized
model better captures the geometry of the original shape at higher
resolutions.

The reader may notice that our experiment setting transplants
the one used in [15] except that all the features are organized using
PSH rather than octrees. This is because we consider OCNN [15]
as our primary competitor and would like the report an objective
side-by-side comparison with it. Lastly, we would like to remind
the reader again that HCNN is not restricted to power-of-two
resolution changes. To the best of our knowledge, our HCNN is
compatible with all the existing CNN architectures and operations.

Training specifications The network is optimized using the
stochastic gradient descent method. We set momentum as 0.9
and weight decay as 0.0005. A mini-batch consists of 32 models.
The dropout ratio is 0.5. The initial learning rate is 0.1, which is
attenuated by a factor of 10 after 10 epochs.

6.2 PSH Construction
As the data pre-processing, we construct a multi-level PSH for
each 3D model corresponding to the actual architecture of the
CNN to be employed. The size of the hash table is set as the
smallest value satisfying m̄3 > |S|. Each hash table slot is an int
type, which stores the data array index of D. Therefore, the hash
table supports the high-resolution models up to |S| = 231, which
is sufficient in our experiments. Next, we seek to make the offset
table as compact as possible. The table size r̄ is initialized as the
smallest integer such that r̄3 ≥ σ |S| with the factor σ empirically
set as σ = 1/2d, as used in [16]. An offset table cell is of 24 bits
(d×8), and each offset value is a 8-bit unsigned char, which
allows an offset up to 255 at each dimension. We first iterate all
the non-empty voxels, and record the count of voxels falling into
each offset table slot. A greedy algorithm is used to assign an
offset value for each offset table slot, in a descending order of the
voxel count of the slot. In other words, we assign an offset value
to the offset table slot with the highest voxel count first. If the hash
construction fails (i.e. we are running out of valid offset values),
we increase r̄ by 3√2 (i.e. double the offset table capacity) until
construction succeeds. We refer readers to [16] for implementation
details.

6.3 Memory Analysis
An important advantage of using PSH is its excelling memory
performance over state-of-the-art methods. Our closest competitor
is OCNN [15], where the total number of the octants at the finest

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

level does not depend on whether leaf octants intersect with the
input model. Instead, it is determined by the occupancy of its
parent: when the parent octant overlaps with the model’s boundary,
all of its eight children octants will be generated. While OCNN’s
memory consumption is quadratically proportional to the voxel
resolution in the asymptotic sense, it also wastes O(N2) memory
for leaf octants that are not on the model. On the other hand,
the memory overhead of our PSH-based data structure primarily
comes from the difference between the actual model size i.e. the
number of voxels on the model at the finest level and the hash table
size (the offset tables are typically much smaller than the main
hash table). Assume that the input model size is |S|=N2. The hash
table size is m̄ = dN 2

3 e, which is the smallest integer satisfying
m̄3 > N2. By splitting dN 2

3 e as: dN 2
3 e = N

2
3 +∆M, 0 ≤ ∆M ≤ 1,

the memory overhead of PSH can then be estimated via:

dN
2
3 e3−N2 =

(
N

2
3 +∆M

)3−N2
∝ ∆MN

4
3 , (9)

which is O(N
4
3). In other words, the memory overhead of our

HCNN is polynomially smaller than OCNN.

2,197

6,859

19,683

50,6539,261

32,768

117,649

287,496

16,144

64,216

246,424

885,632

8,027

30,803

110,704

286,931

64 128 256 512

)slexov #(ezis erutcurts ata
D

Offset tabel size
Hash table size
Octants at the finest level
Voxels on the model
Quadratic growth trend for HCNN
Quadratic growth trend for OCNN

Fig. 6. The sizes of PSH and octree data structures used to encode the
bunny model under resolutions of 643, 1283, 2563 and 5123. Under each
resolution, the total number of octants and the sizes of the hash table
(H) and offset table (Φ) are reported. Their quadratic growth trends are
also plotted.

Figure 6 compares the sizes of the primary data structure for
the bunny model (Figure 5) using OCNN and HCNN – the total
number of leaf octants and the size of the hash table (H) at the
finest level. The size of the offset table Φ is typically an order
smaller than H. Besides, the number of voxels on the model is
also reported. It can be clearly seen from the figure that the size of
the hash table is very close to the actual model size (i.e. the lower
bound of the data structure). The latter is highlighted as grey bars
in the figure. The asymptotic spatial complexity of both HCNN
and OCNN are O(N2), however the plotted growth trends show
that HCNN is much more memory efficient than OCNN.

In reality, the memory footprint follows the similar pattern.
Figure 7 compares the memory usage for OCNN and HCNN
during the mini-batch training. A mini-batch consists of 32 ran-
dom models, and memory usage is quite different for different
batches. Therefore, we report the batch which uses the largest
amount of memory during 1,000 forward and backward iterations.
It can be seen from the figure that when the resolution is 2563,
OCNN consumes 6,080 MB memory, and our method just needs
2,187 MB memory. This is over 170% less memory consumption.
When the resolution is further increased to 5123, OCNN is unable

406

576

999

2,187

4,510

418

624

1,146

2,717

6,204

514

874

2,170

6,080

O
O

M

542

1,063

3,247

O
O

M

O
O

M

1

32 64 128 256 512

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

HCNN
HCNN with neighbor
OCNN
OCNN with neighbor
Out of memory
Quadratic growth trend for HCNN
Quadratic growth trend for OCNN

Fig. 7. The actual memory consumption using OCNN and HCNN over a
mini-batch of 32 models. The physical memory cap of the 1080 GTX card
is 8 GB. HCNN allows very dense voxelization up to 5123 even with pre-
stored neighbor information, while OCNN can only handle resolution of
1283 with recorded neighborhood.

to fit the entire batch into 8 GB memory of the 1080 GTX
video card, while our method is not even close to the cap, which
only uses 4,510 MB memory. If one chooses to use the entire
voxel grid, a mini-batch would need over 2 GB memory (with
nVidia cuDNN) under resolution of 643, which is roughly four
times of HCNN. During CNN training, one could accelerate the
convolution-like operations by saving the neighborhood informa-
tion for each non-empty voxel (or each leaf-octant with OCNN).
With this option enabled, OCNN is even not able to handle the
batch under 1283, while our method is sill able to deal with the
batch under 5123. The plotted growth trends also suggest that
the gap of the memory consumption between OCNN and HCNN
should be quickly widened with the increased voxel resolution.

It is also noteworthy that by slightly changing the implemen-
tation of OCNN, one can further improve OCNN’s memory effi-
ciency for the convolution operation. Because OCNN has marked
whether one octant is empty via the Label property of the octant,
we can exclude the empty voxels when constructing the matrix
D̃i (in Eq. (3)). Or we can assemble the matrix incrementally by
splitting the D̃i into several blocks. Nevertheless, the memory foot-
print of the underlying data structures still favors HCNN, making
it a more memory-friendly solution over OCNN. To verify this
argument, we did another experiment using the mini-batch of 32
models, without recording the neighbor information. We run 1,000
iterations with the resolution of 2563 for both data structures.
The highest memory consumptions are reported. During this test,
the memory buffer of the matrix multiplication is 2,754 MB for
OCNN (with empty octant included), and the OCNN data structure
itself uses 3,368 MB memory space. On the other hand, HCNN
needs 1,196 MB memory for the matrix multiplication, and its
data structure only requires 1,001 MB memory space. Clearly,
even after we reduce the memory consumption of OCNN for the
convolution operation to 1,196 MB (i.e. the same amount needed
for HCNN), which lowers OCNN’s overall memory benchmark to
4,564 MB, it is still much higher than HCNN’s 2,197 MB.

6.4 Shape Classification
The first shape analysis task is the shape classification, which
returns a label out of a pre-defined list that best describes the input
model. The dataset used is ModeNet40 [12] consisting of 9,843
training models and 2,468 test models. The upright direction for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Network architecture Without voting With voting
HCNN(32) 89.3% 89.6%
OCNN(32) 89.3% 89.8%
FullVox(32) 89.3% 89.8%
HCNN(64) 89.3% 89.9%
OCNN(64) 89.3% 89.8%
FullVox(64) 89.0% 89.6%
HCNN(128) 89.4% 90.1%
OCNN(128) 89.2% 90.0%
HCNN(256) 89.2% 90.2%
OCNN(256) 89.2% 90.2%
HCNN(512) 89.1% 89.6%
OCNN(512) OOM OOM
VoxNet(32) 82.0% 83.0%
Geometry image 83.9% –
SubVolSup(32) 87.2% 89.2%
FPNN(64) 87.5% –
PointNet 89.2% –
PointNet++ 90.7% –
PointNet++ (with normal) 91.9% –
VRN(32) 89.0% 91.3%
Kd-Net (depth 10) – 90.6%
Kd-Net (depth 15) – 91.8%

TABLE 1
Benchmark of shape classification on ModelNet40 dataset. In the first

portion of the table, we report the classification results using HCNN
and OCNN. The classification accuracy using fully voxelized models
(FullVox) is also reported. The number followed by a network name

indicates the resolution of the discretization. In the second half of the
table, the benchmarks of other popular nets are listed for the

comparison. The best benchmark among a given group is highlighted
in blue color.

each model is known, and we rotate each model along the upright
direction uniformly generating 12 poses for the training. At the
test stage, the scores of these 12 poses can be pooled together to
increase the accuracy of the prediction. This strategy is known as
orientation voting [13]. The classification benchmarks of HCNN
under resolutions from 323 to 5123 with and without voting are
reported in Table 1.

In the first half of the table, we also list the prediction accuracy
using OCNN [15] and FullVox under the same resolution. The
notion of HCNN(32) in the table means the highest resolution of
the HCNN architecture is 323. The so-called FullVox refers to
treating a 3D model as a fully voxelized bounding box, where a
voxel either houses the corresponding normal vector, as HCNN
or OCNN does, if it intersects with the model’s surface, or a zero
vector. In theory, FullVox explicitly presents the original geometry
of the model without missing any information – even for empty
voxels. All the CNN operations like convolution and pooling
are applied to both empty and non-empty voxels. This naı̈ve
discretization is not scalable and becomes prohibitive when the
voxel resolution goes above 643. Even under moderate resolutions
like 323 and 643, FullVox does not yield noticeably better scores
than OCNN or HCNN, implying that incorporating empty voxels
during CNN operations barely improves the shape analysis results.
As the primary input difference between HCNN and OCNN lies in
the empty voxels OCNN possesses that are not included in HCNN,
it is not difficult to understand why HCNN has comparable
benchmark scores as OCNN while using much less memory.
The reported performance of OCNN is based on the published
executable at https://github.com/Microsoft/O-CNN. As mentioned
above, we shape our HCNN architecture to exactly match the
one used in OCNN to avoid any influences brought by different
networks. We can see from the benchmarks that under moderate

resolutions like 323 and 643, HCNN, OCNN and FullVox perform
equally well, and employing the voting strategy is able to improve
the accuracy by another five percentages on average. When the
voxel resolution is further increased, overfitting may occur as
pointed out in [15], since there are no sufficient training data to
allow us to fine-tune the network’s parameters. As a result, the
prediction accuracy slightly drops even with voting enabled.

The second half of Table 1 lists the classification accuracy
of some other well-known techniques including VoxNet [13],
Geometry image [24], SubVolSup [6], FPNN [52], PointNet [28],
PointNet++ [29], Kd-Net [31], and VRN [53]. Both PointNet++
and Kd-Net yield better benchmark scores. However, they are not
conventional CNNs and use different network architectures than
LeNet. They directly take as the input the raw point cloud. Instead
of convolution, they rely on dedicated operations (e.g. the set
learning layers used in PointNet++) to extract features out of a
subgroup of points. VRN also has a better benchmark score. This
accuracy comes from a collection of efforts including a very deep
architecture (i.e. 45 layers), which is based on ResNet and more
expensive network training (i.e. VRN requires 6 days of training).
In addition, VRN used 24 rotated poses for the orientation pooling
while we only used 12 poses. We also noticed that the performance
of OCNN in our experiment is slightly different from the one
reported in the original OCNN paper. We suspect that this is
because different parameters used during the model rectification
stage (i.e. the magnitude of the dilation). Note that the statistics in
Tab. 1 are reported using a single network. By further ensembling
the networks, better results can be achieved (e.g. VRN ensemble
achieves over 95% accuracy).

Network architecture 323 643 1283 2563 5123

HCNN 25.2 73.1 217.3 794.3 2594.2
OCNN 27.5 78.8 255.0 845.3 OOM
OCNN with neighbor 24.0 72.0 244.4 OOM OOM
HCNN with neighbor 22.9 67.9 205.4 772.7 2555.5
FullVox 39.7 269.0 OOM OOM OOM

TABLE 2
Average forward-backward iteration speed using HCNN, OCNN and
FullVox (in ms). For a fair comparison, we exclude the hard drive I/O

time.

Compact hashing also improves the time performance of the
networks. Table 2 reports the average forward-backward time in
ms over 1,000 iterations. We can see that HCNN is consistently
faster than OCNN regardless if the neighbor information is pre-
recorded, not to mention the FullVox scheme. The timing infor-
mation reported does not include the hard drive I/O latency for a
fair comparison. In our experiment, HCNN is typically 10% faster
than OCNN under the same resolution.

6.5 Shape Retrieval

The next shape analysis task is the shape retrieval. In this experi-
ment, we use the ShapeNet Core55 dataset, which consists of
51,190 models with 55 categories. Subcategory information asso-
ciated with models is ignored in this test. 70% of the data is used
for training; 10% is used for validation, and the rest 20% is for
testing. Data augmentation is performed in this test by rotating 12
poses along the upright direction for each model. The orientational
pool is also used [6], [7]. The neural network produces a vector
of the category probability scores for an input query model, and
the model is considered belonging to the category of the highest

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/Microsoft/O-CNN

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

noisicerP

Recall

Bai_GIFT
Li_ViewAggregation
Su_MVCNN
Tatsuma_LCDR
Wang_CCMLT 0.75

0.775

0.8

0.825

0.85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

HCNN(32)
HCNN(64)
OCNN(32)
OCNN(64)

Fig. 8. The precision recall curves for HCNN, OCNN as well as other
five famous multi-view CNN methods from SHREC16. The difference
between HCNN and OCNN (under resolutions of 323 and 643) is quite
subtle even after zooming in.

score. The retrieval set corresponding to this input query shape
is a collection of models that have the same category label sorted
according to the L-2 distance between their feature vectors and the
query shape’s. Precision and recall are two widely-used metrics,
where precision refers to the percentage of retrieved shapes that
correctly match the category label of the query shape, and recall is
defined as the percentage of the shapes of the query category that
have been retrieved. For a given query shape, with more instances
being retrieved, the precision drops when a miss-labeled instance
is retrieved. On the other hand, recall quickly goes up since more
models out of the query category have been retrieved.

The comparative precision and recall curves are shown in
Figure 8. Together with our HCNN under resolutions of 323 and
643, we also plot the curves for OCNN(32) and OCNN(64) as well
as several widely-known methods including GIFT [5], Multi-view
CNN [7], Appearance-based feature extraction using pre-trained
CNN and Channel-wise CNN [54]. The performance benchmarks
of these latter methods are obtained using the published evaluator
at https://shapenet.cs.stanford.edu/shrec16/. From the figure, we
can see that 3D CNN methods like HCNN and OCNN outperform
multi-view based methods, since the geometry information of the
original models is much better encoded. The performances of HC-
NN and OCNN are very close to each other. After enlarging curve
segments associated with HCNN(32), HCNN(64), OCNN(32) and
OCNN(64) within the precision interval of [0.75,0.85], one can
see that OCNN(32) is slightly below (worse) the other three.

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0 0.2 0.4 0.6 0.8

Pr
ec

is
io

n

HCNN(32)
HCNN(64)
HCNN(128)
HCNN(256)
HCNN(512)

Another interesting finding
is that HCNN seems to be
quite inert towards the voxel
resolution. As shown on the
right, HCNN(32) already has
a very good result while fur-
ther increasing the resolution to
5123 does not significantly im-
prove the performance. Curves
for HCNN(32) to HCNN(512)
are hardly discernible. We feel like this actually is reasonable since
identifying a high-level semantic label of an input 3D model does
not require detailed local geometry information in general – even a
rough shape contour may suffice. Similar conclusion can be drawn
when evaluating the retrieval performance using other metrics as
reported in Table 3. Here in addition to precision and recall, we
also compare the retrieval performance in terms of mAP, F-score
and NDCG, where mAP is the mean average precision, and F-

score is the harmonics mean of the precision and recall. NDCG
reflects the ranking quality and the subcategory similarity. It can
be seen from the table that, HCNN has a comparable performance
as OCNN does. Both outperform multi-view based methods.

Method P@N R@N mAP F1@N NDCG
Tatsuma LCDR 0.427 0.689 0.728 0.472 0.875
Wang CCMLT 0.718 0.350 0.823 0.391 0.886
Li ViewAgg. 0.508 0.868 0.829 0.582 0.904
Bai GIFT 0.706 0.695 0.825 0.689 0.896
Su MVCNN 0.770 0.770 0.873 0.764 0.899
OCNN(32) 0.768 0.769 0.871 0.763 0.904
OCNN(64) 0.778 0.782 0.875 0.775 0.905
HCNN(32) 0.777 0.780 0.877 0.773 0.905
HCNN(64) 0.777 0.777 0.878 0.772 0.905
HCNN(128) 0.778 0.779 0.878 0.774 0.906
HCNN(256) 0.775 0.776 0.878 0.773 0.906
HCNN(512) 0.780 0.783 0.874 0.777 0.906

TABLE 3
Shape retrieval benchmarks.

6.6 Shape segmentation
Finally, we discuss the experimental results of the shape seg-
mentation, which assigns each point or triangle on the input
model a part category label. Our experiment is based on the
dataset in [55], which adds extra semantic part annotations over
a subset of models from ShapeNet. The original dataset includes
16 categories of shapes, and each category has two to six parts.
Clearly, segmentation is more challenging than classification or
retrieval since part segmentation often relies on local geometry
features, and we would like to fully test the advantage of the
high-resolution voxelization that is only possible with HCNN. On
the other hand, more hierarchy levels also induce more network
parameters to be tuned during the CNN training. Therefore, we
only test the segmentation performance when there are sufficient
training data. Again, we rotate 12 poses along the upright direction
for each model to augment the dataset. The training/test split is set
the same as in [15]. We consider the segmentation as a per-point
classification problem, and use intersection over union (IoU) to
quantitatively evaluate the segmentation quality as did in [28]. It is
noteworthy that the statistics reported in [15] were actually based
on IoU counts on the leaf octants. It is easy to understand that
under moderate voxel resolutions, the mean IoU (mIoU) defined
on the voxel grid trends to have a better benchmark than on the
original point cloud because a coarse discretization could alias
the true boundary between two segments on the original model.
To avoid such confusion, we report benchmarks of HCNN under
different resolutions on both voxel grids and the input point clouds
(i.e. the so-called HCNNP in the table) in Table 4. We can see
that discretizing models at higher resolutions effectively improves
the segmentation quality. While the mIoU improvement may read
incremental from the table, those improvements lead to a better
classification of points near the segmentation boundary. As shown
in Figure 10, the segmentation result improvement is visually
noticeable with higher voxel resolutions.

Discussion In summary, as clearly demonstrated in our experi-
ments, HCNN acts like a “superset” of OCNN, which we consider
as the most state-of-the-art 3D CNN method and our closest
competitor. The benchmarks in different shape analysis tasks of
using our HCNN are at least very comparable to the ones obtained
using OCNN, if not better. However, we would like to remind

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://shapenet.cs.stanford.edu/shrec16/

11

car

faucet

guitar

gun

Query shape Top five retrieval results using HCNN(32)

Fig. 9. The top five retrieval result of input queries of four categories, namely car, faucet, guitar and gun. The leftmost column is the query input.

32 64

256 512128

32 64

128 256 512

Fig. 10. In shape segmentation, high voxel resolution better captures
local geometry features between adjacent object parts and yields better
results.

the reader that the memory consumption of HCNN is significantly
less than OCNN and the time performance is also slightly better
(i.e. ∼ 10% as reported in Table 2). As a result, HCNN allows
3D CNNs to take high-resolution models during the training.
For shape classification and retrieval, the primary task for the

Method Plane Car Chair Guitar Lamp Table
Yi et al. 2016 81.0% 75.7% 87.6% 92.0% 82.5% 75.3%
PointNet 83.4% 74.9% 89.6% 91.5% 80.8% 80.6%
PointNet++ 82.4% 77.3% 90.8% 91.0% 83.7% 82.6%
SpecCNN 81.6% 75.2% 90.2% 93.0% 84.7% 82.1%
Kd-Net 80.1% 70.3% 88.6% 90.2% 81.0% 80.3%
OCNN(32) 84.2% 74.1% 90.8% 91.3% 82.5% 84.2%
OCNN(64) 85.5% 77.0% 91.1% 91.9% 83.3% 84.4%
HCNN(32) 85.4% 75.8% 91.3% 91.8% 83.3% 85.8%
HCNN(64) 85.5% 77.0% 91.3% 92.0% 83.7% 85.7%
HCNN(128) 85.6% 78.7% 91.3% 92.0% 83.6% 85.9%
HCNN(256) 85.8% 79.3% 91.4% 92.0% 84.0% 86.0%
HCNN(512) 86.8% 80.2% 91.3% 91.9% 84.0% 85.9%
HCNNP(32) 81.1% 77.2% 90.7% 90.8% 83.2% 85.3%
HCNNP(64) 85.0% 78.9% 91.5% 91.7% 83.8% 85.9%
HCNNP(128) 86.2% 79.9% 91.8% 91.9% 83.9% 86.2%
HCNNP(256) 86.3% 79.8% 91.8% 92.0% 84.1% 86.1%
HCNNP(512) 86.9% 80.1% 91.8% 91.9% 84.3% 86.2%

TABLE 4
Benchmarks for shape segmentation. HCNNP(·) refers to the

benchmarks based on IoU counts over the original input point clouds
under the corresponding voxel resolution.

neural network is to reduce a complex input 3D model to few
semantic labels i.e. from a very high-dimension vector to a low-
dimension one. It is not surprising to us that a dense voxelization
has limited contributions towards the final benchmark result. On
the other hand, a high-quality segmentation requires detailed
local geometry features which is somewhat commensurate to the
voxel resolution. Therefore, increasing the resolution improves
segmentation result in general. Undoubtedly, being able to input
high-resolution models to the CNN will broaden the 3D CNN
applications and potentially allow us to leverage CNNs to deal
with more challenging tasks for 3D graphics contents such as
shape synthesis [56], [57]. Besides what has been discussed in
the experiment, our HCNN is more versatile and is compatible
with all CNN configurations like arbitrarily-strided convolution
and pooling. While not yet particularly popular, research efforts
have already been devoted to investigate the advantages of such

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

irregular CNNs [58]. Our HCNN would facilitate such possible
future research endeavors more friendly.

 For real-time applications, our data structure can also be
conveniently modified to work with the real-time GPU hashing
algorithm [59]. Similar to HCNN with mini-batch (§ 4.2), we
can concatenate GPU hash tables as well as their buckets of all
the models in a mini-batch to create a super hybrid hash during
the CNN training, with necessary accumulated indices tables. The
PSH function code in hash2col (lines 21–22) and col2hash
(lines 22–23) should be replaced by the GPU hashing functions
accordingly. This hashing scheme consumes more memory than
PSH. According to comparison reported in [59], GPU hashing
uses 1.42|S| memory compared with 1.16|S| memory usage of
PSH, where |S| is the raw data size. However, as GPU hashing
does not generate O(N2) empty voxels as OCNN does, it is still
more memory-efficient than OCNN under high resolutions.

7 CONCLUSION

In this paper, we present a novel 3D CNN framework, named
HCNN, for high-resolution shape analysis. Our data structure
constructs a set of hierarchical perfect spatial hashing of an input
3D model at differen resolutions. HCNN is memory-efficient, and
its memory overhead is polynomially smaller than existing octree-
based methods like OCNN [15]. We test the proposed HCNN
for three classic shape analysis tasks: classification, retrieval and
segmentation. The experimental results show that HCNN yields
similar or better benchmarks compared with state-of-the-art, while
reducing the memory consumption up to three times.

 HCNN also has some limitations. The construction of PSH
could be quite slow. A potential solution could be to use GPUs
to accelerate the hashing constriction as did in [59]. However,
doing so could compromise the compactness of the resulting
hashing map. Therefore, one may have to choose the best trade-
off balance between the spatial compactness and hash construction
performance for the target applications.

 Thanks to its superior memory performance, HCNN allows
high-resolution shape analysis that is not possible with existing
methods, which paves the path of using CNNs to deal with
more challenging tasks such as high-resolution shape generation,
denoising and morphing. We tested HCNN’s performance with
the standard 3D shape databases for an objective comparison with
other peer techniques. Applying HCNN to 3D data sets other than
manmade objects such as indoor scene database [60] is also an
interesting future work for us.

ACKNOWLEDGMENTS

The authors would like to thank reviewers for their insightful
comments. This work is partially supported by the National Key
Research & Development Program of China (2016YFB1001403),
NSF China No. 61772462, No. 61572429, No. 61472352, No.
U1609215, Microsoft Research Asia, NSF under grant No. CHS-
1717972, and AFRL under grant No. FA9453-18-2-0022.
Yanlin Weng is the corresponding author of the work.

REFERENCES

[1] R. Hu, O. van Kaick, Y. Zheng, and M. Savva, “Siggraph asia 2016:
course notes directions in shape analysis towards functionality,” in
SIGGRAPH ASIA 2016 Courses. ACM, 2016, p. 8.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[5] S. Bai, X. Bai, Z. Zhou, Z. Zhang, and L. Jan Latecki, “Gift: A real-
time and scalable 3d shape search engine,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
5023–5032.

[6] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d data,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 5648–5656.

[7] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 945–
953.

[8] B. Shi, S. Bai, Z. Zhou, and X. Bai, “Deeppano: Deep panoramic rep-
resentation for 3-d shape recognition,” IEEE Signal Processing Letters,
vol. 22, no. 12, pp. 2339–2343, 2015.

[9] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic
convolutional neural networks on riemannian manifolds,” in Proceedings
of the IEEE international conference on computer vision workshops,
2015, pp. 37–45.

[10] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and
P. Vandergheynst, “Learning class-specific descriptors for deformable
shapes using localized spectral convolutional networks,” in Computer
Graphics Forum, vol. 34, no. 5. Wiley Online Library, 2015, pp. 13–23.

[11] B. Vallet and B. Lévy, “Spectral geometry processing with manifold
harmonics,” in Computer Graphics Forum, vol. 27, no. 2. Wiley Online
Library, 2008, pp. 251–260.

[12] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1912–1920.

[13] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2015, pp. 922–928.

[14] G. Riegler, A. O. Ulusoy, and A. Geiger, “Octnet: Learning deep
3d representations at high resolutions,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 6620–
6629.

[15] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-cnn: Octree-
based convolutional neural networks for 3d shape analysis,” ACM Trans.
Graph., vol. 36, no. 4, pp. 72:1–72:11, Jul. 2017.

[16] S. Lefebvre and H. Hoppe, “Perfect spatial hashing,” ACM Trans. Graph.,
vol. 25, no. 3, pp. 579–588, Jul. 2006.

[17] N. J. Mitra, M. Wand, H. Zhang, D. Cohen-Or, V. Kim, and Q.-X. Huang,
“Structure-aware shape processing,” in ACM SIGGRAPH 2014 Courses,
ser. SIGGRAPH ’14. New York, NY, USA: ACM, 2014, pp. 13:1–13:21.
[Online]. Available: http://doi.acm.org/10.1145/2614028.2615401

[18] K. Xu, V. G. Kim, Q. Huang, N. Mitra, and E. Kalogerakis, “Data-driven
shape analysis and processing,” in SIGGRAPH ASIA 2016 Courses, ser.
SA ’16. New York, NY, USA: ACM, 2016, pp. 4:1–4:38. [Online].
Available: http://doi.acm.org/10.1145/2988458.2988473

[19] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “C-
nn features off-the-shelf: an astounding baseline for recognition,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, 2014, pp. 806–813.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convo-
lutional networks for accurate object detection and segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 38, no. 1,
pp. 142–158, 2016.

[22] A. Boulch, J. Guerry, B. Le Saux, and N. Audebert, “Snapnet: 3d
point cloud semantic labeling with 2d deep segmentation networks,”
Computers & Graphics, 2017.

[23] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://doi.acm.org/10.1145/2614028.2615401
http://doi.acm.org/10.1145/2988458.2988473

13

[24] A. Sinha, J. Bai, and K. Ramani, “Deep learning 3d shape surfaces
using geometry images,” in European Conference on Computer Vision.
Springer, 2016, pp. 223–240.

[25] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,” ACM Transac-
tions on Graphics (TOG), vol. 21, no. 3, pp. 355–361, 2002.

[26] K. Guo, D. Zou, and X. Chen, “3d mesh labeling via deep convolutional
neural networks,” ACM Transactions on Graphics (TOG), vol. 35, no. 1,
p. 3, 2015.

[27] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym, E. Yumer, V. G.
KIM, and Y. Lipman, “Convolutional neural networks on surfaces via
seamless toric covers.” SIGGRAPH, 2017.

[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” arXiv preprint
arXiv:1612.00593, 2016.

[29] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems, 2017, pp. 5105–5114.

[30] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra, “PCPNet:
Learning local shape properties from raw point clouds,” Computer
Graphics Forum, vol. 37, no. 2, pp. 75–85, 2018.

[31] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks for
the recognition of 3d point cloud models,” in 2017 IEEE International
Conference on Computer Vision (ICCV). IEEE, 2017, pp. 863–872.

[32] D. Z. Wang and I. Posner, “Voting for voting in online point cloud object
detection.” in Robotics: Science and Systems, 2015.

[33] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[34] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, “Vote3deep:
fast object detection in 3d point clouds using efficient convolutional
neural networks,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 1355–1361.

[35] B. Graham, M. Engelcke, and L. van der Maaten, “3d semantic segmen-
tation with submanifold sparse convolutional networks,” CVPR, 2018.

[36] B. Graham, “Spatially-sparse convolutional neural networks,” arXiv
preprint arXiv:1409.6070, 2014.

[37] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Tenth International Work-
shop on Frontiers in Handwriting Recognition. Suvisoft, 2006.

[38] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” arXiv preprint arXiv:1703.06211, 2017.

[39] J. Ma, W. Wang, and L. Wang, “Irregular convolutional neural networks,”
arXiv preprint arXiv:1706.07966, 2017.

[40] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in Computer Vision
(ICCV), 2011 IEEE International Conference on. IEEE, 2011, pp. 2018–
2025.

[41] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolution-
al networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[42] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2015, pp. 1520–1528.

[43] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 2758–2766.

[44] L. Zhu, Y. Chen, and A. Yuille, “Learning a hierarchical deformable
template for rapid deformable object parsing,” IEEE transactions on
pattern analysis and machine intelligence, vol. 32, no. 6, pp. 1029–1043,
2010.

[45] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1874–1883.

[46] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[47] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675–678.

[48] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[50] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[51] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting.” Journal of machine learning research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[52] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas, “Fpnn: Field
probing neural networks for 3d data,” in Advances in Neural Information
Processing Systems, 2016, pp. 307–315.

[53] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Generative and dis-
criminative voxel modeling with convolutional neural networks,” arXiv
preprint arXiv:1608.04236, 2016.

[54] M. Savva, F. Yu, H. Su, M. Aono, B. Chen, D. Cohen-Or, W. Deng, H. Su,
S. Bai, X. Bai et al., “Shrec’16 track: large-scale 3d shape retrieval from
shapenet core55,” in Proceedings of the Eurographics Workshop on 3D
Object Retrieval, 2016.

[55] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, A. Lu, Q. Huang,
A. Sheffer, L. Guibas et al., “A scalable active framework for region
annotation in 3d shape collections,” ACM Transactions on Graphics
(TOG), vol. 35, no. 6, p. 210, 2016.

[56] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan,
“Example-based synthesis of 3d object arrangements,” ACM Transac-
tions on Graphics (TOG), vol. 31, no. 6, p. 135, 2012.

[57] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin, “Texture and
shape synthesis on surfaces,” in Proceedings of the 12th Eurographics
Workshop on Rendering Techniques, 2001, pp. 301–312.

[58] S. Han, Z. Meng, J. O’Reilly, J. Cai, X. Wang, and Y. Tong, “Optimizing
filter size in convolutional neural networks for facial action unit recogni-
tion,” arXiv preprint arXiv:1707.08630, 2017.

[59] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmach-
er, J. D. Owens, and N. Amenta, “Real-time parallel hashing on the gpu,”
ACM Transactions on Graphics (TOG), vol. 28, no. 5, p. 154, 2009.

[60] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese, “Joint 2D-3D-Semantic
Data for Indoor Scene Understanding,” ArXiv e-prints, Feb. 2017.

Tianjia Shao is currently a Lecturer in the
School of Computing, University of Leeds. He
received his PhD in Computer Science from In-
stitute for Advanced Study, and his B.S. from
the Department of Automation, both in Tsinghua
University. His current research focuses on 3D
modeling from consumer hardware, and struc-
ture/function aware geometry processing.

Yin Yang received his Ph.D. degree in computer
science from the University of Texas at Dallas
in 2013. He is an Assistant Professor in De-
partment of Electrical Computer Engineering at
the University of New Mexico, Albuquerque. His
research interests include physics-based anima-
tion/simulation and related applications, scientif-
ic visualization and medical imaging analysis.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

Yanlin Weng is currently an Associate Professor
of the School of Computer Science and Tech-
nology at Zhejiang University. She got her Ph.D
degree in Computer Science from University of
Wisconsin - Milwaukee, and her master and
bachelor degrees in Control Science and Engi-
neering from Zhejiang University. Her research
interest includes computer graphics and multi-
media.

Qiming Hou is currently an Associate Profes-
sor in the Graphics and Parallel Systems Lab,
Zhejiang University. He received his BS degree
in Academic Talent Program and PhD degree
in Computer Science, both from Tsinghua Uni-
versity. He has been working on GPGPU pro-
gramming languages and tools, rendering sys-
tems and GPGPU applications. His current re-
search interest is vector graphics rendering,
face-tracking, and light transport simulation.

Kun Zhou is a Cheung Kong Professor in the
Computer Science Department of Zhejiang U-
niversity, and the Director of the State Key Lab
of CAD&CG. Prior to joining Zhejiang University
in 2008, Dr. Zhou was a Leader Researcher of
the Internet Graphics Group at Microsoft Re-
search Asia. He received his B.S. degree and
Ph.D. degree in computer science from Zhejiang
University in 1997 and 2002, respectively. His
research interests are in visual computing, paral-
lel computing, human computer interaction, and

virtual reality. He currently serves on the editorial/advisory boards of
ACM Transactions on Graphics and IEEE Spectrum. He is a Fellow of
IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2887262

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

